Edit model card

wav2vec2-large-xlsr-53-German

Fine-tuned facebook/wav2vec2-large-xlsr-53 in German using the Common Voice

When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:


import torch

import torchaudio

from datasets import load_dataset

from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "de", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German")

model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.

# We need to read the aduio files as arrays

def speech_file_to_array_fn(batch):

  speech_array, sampling_rate = torchaudio.load(batch["path"])

  batch["speech"] = resampler(speech_array).squeeze().numpy()

  return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():

  logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))

print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the Czech test data of Common Voice.


import torch

import torchaudio

from datasets import load_dataset, load_metric

from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

import re

test_dataset = load_dataset("common_voice", "de", split="test[:15%]")

wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German")

model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German")

model.to("cuda")

chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]'

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.

# We need to read the aduio files as arrays

def speech_file_to_array_fn(batch):

  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()

  

  speech_array, sampling_rate = torchaudio.load(batch["path"])

  

  batch["speech"] = resampler(speech_array).squeeze().numpy()

  

  return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.

# We need to read the aduio files as arrays

def evaluate(batch):

    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    

    with torch.no_grad():

    

      logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    

    pred_ids = torch.argmax(logits, dim=-1)

    

    batch["pred_strings"] = processor.batch_decode(pred_ids)

    

    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 25.284593 %

Training

10% of the Common Voice train, validation datasets were used for training.

Testing

15% of the Common Voice Test dataset were used for training.

Downloads last month
23
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-German

Evaluation results