Meli101/biomedNLP-text-classifier-tf
This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0983
- Validation Loss: 0.2868
- Train Precision: 0.9210
- Train Recall: 0.9212
- Train Accuracy: 0.9211
- Train F1: 0.9210
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1535, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Precision | Train Recall | Train Accuracy | Train F1 | Epoch |
---|---|---|---|---|---|---|
0.5233 | 0.3586 | 0.8710 | 0.8670 | 0.8666 | 0.8674 | 0 |
0.2081 | 0.2713 | 0.9096 | 0.9099 | 0.9097 | 0.9097 | 1 |
0.0983 | 0.2868 | 0.9210 | 0.9212 | 0.9211 | 0.9210 | 2 |
Framework versions
- Transformers 4.37.2
- TensorFlow 2.15.0
- Datasets 2.17.1
- Tokenizers 0.15.2
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.