vit-msn-small-corect_deepcleaned_dataset_lateral_flow_ivalidation

This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2229
  • Accuracy: 0.9194

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9231 3 0.6175 0.7216
No log 1.8462 6 0.4141 0.8352
No log 2.7692 9 0.7408 0.5788
0.5817 4.0 13 0.2757 0.9158
0.5817 4.9231 16 0.2847 0.8791
0.5817 5.8462 19 0.2456 0.9011
0.3724 6.7692 22 0.2547 0.9121
0.3724 8.0 26 0.3007 0.8828
0.3724 8.9231 29 0.3043 0.9011
0.3155 9.8462 32 0.2603 0.9048
0.3155 10.7692 35 0.2481 0.9158
0.3155 12.0 39 0.2229 0.9194
0.2844 12.9231 42 0.3036 0.8791
0.2844 13.8462 45 0.2579 0.9084
0.2844 14.7692 48 0.2434 0.9158
0.2517 16.0 52 0.2718 0.9048
0.2517 16.9231 55 0.2513 0.9121
0.2517 17.8462 58 0.2503 0.9121
0.2468 18.4615 60 0.2491 0.9121

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
9,829
Safetensors
Model size
21.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Melo1512/vit-msn-small-corect_deepcleaned_dataset_lateral_flow_ivalidation

Finetuned
(25)
this model

Evaluation results