vit-msn-small-lateral_flow_ivalidation_green_channel

This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5924
  • Accuracy: 0.7454

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: reduce_lr_on_plateau
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 100
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9312 0.9231 6 0.9478 0.2788
0.7936 2.0 13 0.8935 0.2491
0.718 2.9231 19 0.8518 0.2249
0.6787 4.0 26 0.8097 0.2119
0.6538 4.9231 32 0.7776 0.2770
0.6265 6.0 39 0.7428 0.3662
0.5812 6.9231 45 0.7191 0.4424
0.6138 8.0 52 0.6996 0.4963
0.57 8.9231 58 0.6900 0.5409
0.5595 10.0 65 0.6804 0.5762
0.5288 10.9231 71 0.6727 0.6004
0.5094 12.0 78 0.6613 0.6320
0.5073 12.9231 84 0.6490 0.6636
0.4504 14.0 91 0.6386 0.6970
0.4868 14.9231 97 0.6305 0.7156
0.4799 16.0 104 0.6264 0.7175
0.4861 16.9231 110 0.6235 0.7175
0.4975 18.0 117 0.6163 0.7286
0.4712 18.9231 123 0.6127 0.7398
0.468 20.0 130 0.6107 0.7416
0.4562 20.9231 136 0.6070 0.7454
0.5195 22.0 143 0.6056 0.7454
0.4385 22.9231 149 0.6033 0.7416
0.4211 24.0 156 0.6050 0.7342
0.4364 24.9231 162 0.6023 0.7361
0.4327 26.0 169 0.5980 0.7416
0.4757 26.9231 175 0.6000 0.7361
0.4287 28.0 182 0.5924 0.7454
0.4313 28.9231 188 0.5970 0.7361
0.4483 30.0 195 0.5962 0.7398
0.3956 30.9231 201 0.5976 0.7305
0.41 32.0 208 0.6060 0.7212
0.4371 32.9231 214 0.6050 0.7193
0.4169 34.0 221 0.6045 0.7212
0.3882 34.9231 227 0.6020 0.7230
0.5097 36.0 234 0.6011 0.7286
0.476 36.9231 240 0.6027 0.7268
0.387 38.0 247 0.6012 0.7249
0.4744 38.9231 253 0.6017 0.7230
0.4712 40.0 260 0.6025 0.7230
0.4242 40.9231 266 0.6022 0.7230
0.4087 42.0 273 0.6021 0.7230
0.4009 42.9231 279 0.6026 0.7230
0.4219 44.0 286 0.6026 0.7230
0.4208 44.9231 292 0.6024 0.7230
0.3644 46.0 299 0.6013 0.7230
0.4458 46.9231 305 0.5997 0.7286
0.425 48.0 312 0.5991 0.7286
0.3982 48.9231 318 0.5995 0.7286
0.4167 50.0 325 0.5992 0.7286
0.4112 50.9231 331 0.5992 0.7286
0.4073 52.0 338 0.5992 0.7286
0.4413 52.9231 344 0.5991 0.7286
0.4326 54.0 351 0.5991 0.7286
0.4206 54.9231 357 0.5992 0.7286
0.3776 56.0 364 0.5993 0.7286
0.3792 56.9231 370 0.5994 0.7286
0.4075 58.0 377 0.5995 0.7286
0.4412 58.9231 383 0.5995 0.7286
0.4137 60.0 390 0.5995 0.7286
0.424 60.9231 396 0.5995 0.7286
0.3988 62.0 403 0.5997 0.7286
0.4167 62.9231 409 0.5996 0.7286
0.41 64.0 416 0.5997 0.7286
0.4235 64.9231 422 0.5997 0.7286
0.4544 66.0 429 0.5998 0.7286
0.4495 66.9231 435 0.5997 0.7286
0.424 68.0 442 0.5997 0.7286
0.4053 68.9231 448 0.5997 0.7286
0.426 70.0 455 0.5999 0.7286
0.3865 70.9231 461 0.6000 0.7286
0.3732 72.0 468 0.6001 0.7286
0.4289 72.9231 474 0.6002 0.7286
0.4524 74.0 481 0.6002 0.7286
0.4081 74.9231 487 0.6002 0.7286
0.384 76.0 494 0.6001 0.7286
0.4177 76.9231 500 0.6000 0.7286
0.3777 78.0 507 0.6000 0.7286
0.4226 78.9231 513 0.6000 0.7286
0.419 80.0 520 0.6000 0.7286
0.3956 80.9231 526 0.6000 0.7286
0.3669 82.0 533 0.6000 0.7286
0.3902 82.9231 539 0.6000 0.7286
0.4193 84.0 546 0.6001 0.7286
0.4115 84.9231 552 0.6001 0.7286
0.3923 86.0 559 0.6001 0.7286
0.4011 86.9231 565 0.6001 0.7286
0.4765 88.0 572 0.6000 0.7286
0.4034 88.9231 578 0.5999 0.7286
0.3867 90.0 585 0.5998 0.7286
0.4201 90.9231 591 0.5998 0.7286
0.4346 92.0 598 0.5998 0.7286
0.4171 92.3077 600 0.5998 0.7286

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
21.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Melo1512/vit-msn-small-lateral_flow_ivalidation_green_channel

Finetuned
(25)
this model

Evaluation results