Melo1512's picture
End of training
48c8e22 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/vit-msn-small
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-msn-small-wbc-classifier-0316-cleaned-dataset-10
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.893532776066872

vit-msn-small-wbc-classifier-0316-cleaned-dataset-10

This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3538
  • Accuracy: 0.8935

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5193 1.0 16 0.6823 0.7945
0.5339 2.0 32 0.4553 0.8438
0.4778 3.0 48 0.4525 0.8478
0.4253 4.0 64 0.4077 0.8473
0.4086 5.0 80 0.4218 0.8575
0.3673 6.0 96 0.4002 0.8693
0.3275 7.0 112 0.3302 0.8773
0.3231 8.0 128 0.3672 0.8803
0.302 9.0 144 0.3363 0.8900
0.3122 10.0 160 0.3284 0.8843
0.2686 11.0 176 0.3317 0.8874
0.2786 12.0 192 0.3660 0.8883
0.2338 13.0 208 0.3520 0.8834
0.2466 14.0 224 0.3414 0.8896
0.2296 15.0 240 0.3531 0.8874
0.1961 16.0 256 0.3844 0.8847
0.2056 17.0 272 0.3705 0.8900
0.197 18.0 288 0.3538 0.8935
0.1748 19.0 304 0.3717 0.8887
0.1807 20.0 320 0.4075 0.8843
0.177 21.0 336 0.3881 0.8830
0.1433 22.0 352 0.4014 0.8856
0.1522 23.0 368 0.3918 0.8874
0.1322 24.0 384 0.4199 0.8905
0.1396 25.0 400 0.4142 0.8896

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1