distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 0.2663
- Accuracy: 0.9461
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 9
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
4.1991 | 1.0 | 318 | 3.1495 | 0.7523 |
2.4112 | 2.0 | 636 | 1.5868 | 0.8510 |
1.1887 | 3.0 | 954 | 0.7975 | 0.9203 |
0.5952 | 4.0 | 1272 | 0.4870 | 0.9319 |
0.3275 | 5.0 | 1590 | 0.3571 | 0.9419 |
0.2066 | 6.0 | 1908 | 0.3070 | 0.9429 |
0.1456 | 7.0 | 2226 | 0.2809 | 0.9448 |
0.1154 | 8.0 | 2544 | 0.2697 | 0.9468 |
0.1011 | 9.0 | 2862 | 0.2663 | 0.9461 |
Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
- Downloads last month
- 19
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.