realDataFineTune / README.md
MichaelBr's picture
End of training
cbcd49d verified
metadata
license: mit
library_name: peft
tags:
  - trl
  - sft
  - generated_from_trainer
base_model: microsoft/Phi-3-mini-4k-instruct
model-index:
  - name: realDataFineTune
    results: []

realDataFineTune

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • eval_loss: 12.1175
  • eval_runtime: 379.7612
  • eval_samples_per_second: 15.407
  • eval_steps_per_second: 3.852
  • step: 0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.03
  • lr_scheduler_warmup_steps: 20
  • training_steps: 1000

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.1.0+cpu
  • Datasets 2.19.0
  • Tokenizers 0.19.1

Training procedure

Framework versions

  • PEFT 0.6.2