mistral-sft-7b-dpo-qlora
This model is a fine-tuned version of HuggingFaceH4/mistral-7b-sft-beta on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:
- Loss: 0.6936
- Rewards/chosen: 0.0005
- Rewards/rejected: 0.0001
- Rewards/accuracies: 0.6875
- Rewards/margins: 0.0003
- Logps/rejected: -122.9776
- Logps/chosen: -86.4464
- Logits/rejected: -3.0453
- Logits/chosen: -2.9824
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 221
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Framework versions
- PEFT 0.7.1
- Transformers 4.38.2
- Pytorch 2.2.1
- Datasets 2.14.6
- Tokenizers 0.15.2
- Downloads last month
- 1
Model tree for MichaelR207/mistral-sft-7b-dpo-qlora
Base model
mistralai/Mistral-7B-v0.1
Finetuned
HuggingFaceH4/mistral-7b-sft-beta