File size: 1,745 Bytes
fa2e5b9 6b46192 fa2e5b9 6b46192 fa2e5b9 6b46192 fa2e5b9 505fdcd fa2e5b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: mit
library_name: peft
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
base_model: HuggingFaceH4/mistral-7b-sft-beta
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: mistral-sft-7b-dpo-qlora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral-sft-7b-dpo-qlora
This model is a fine-tuned version of [HuggingFaceH4/mistral-7b-sft-beta](https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6936
- Rewards/chosen: 0.0005
- Rewards/rejected: 0.0001
- Rewards/accuracies: 0.6875
- Rewards/margins: 0.0003
- Logps/rejected: -122.9776
- Logps/chosen: -86.4464
- Logits/rejected: -3.0453
- Logits/chosen: -2.9824
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 221
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
### Framework versions
- PEFT 0.7.1
- Transformers 4.38.2
- Pytorch 2.2.1
- Datasets 2.14.6
- Tokenizers 0.15.2 |