Mihaiii's picture
Update README.md
fab54d8 verified
|
raw
history blame
2.02 kB
metadata
datasets:
  - ehartford/dolphin
  - jondurbin/airoboros-2.2.1
  - ehartford/dolphin-coder
  - teknium/openhermes
  - ise-uiuc/Magicoder-OSS-Instruct-75K
  - ise-uiuc/Magicoder-Evol-Instruct-110K
  - LDJnr/Capybara
language:
  - en
license: apache-2.0

This is pruned down version of cognitivecomputations/dolphin-2.6-mistral-7b-dpo from 7.24B params to 5.93B params (~ 82%).

Steps to replicate:

Use laserQlora.ipynb from cognitivecomputations/laserRMT to determine which layers should be eliminated.

Replace model_name = "mistralai/Mistral-7B-v0.1" with model_name = "cognitivecomputations/dolphin-2.6-mistral-7b-dpo". I also ran the script only for self_attn.v_proj (so change the script to layer_types=["self_attn.v_proj"])

Order by snr descending and eliminate top layers using mergekit. The threshold for elimination is up to you, depeding on how many layers you want removed. I decided to remove 6 layers (indexes: 3, 5, 16, 18, 19, 24 )

Here is the mergekit config:

slices:
  - sources:
    - model: "cognitivecomputations/dolphin-2.6-mistral-7b-dpo"
      layer_range: [0, 3]
  - sources:
    - model: "cognitivecomputations/dolphin-2.6-mistral-7b-dpo"
      layer_range: [4, 5]
  - sources:
    - model: "cognitivecomputations/dolphin-2.6-mistral-7b-dpo"
      layer_range: [6, 16]
  - sources:
    - model: "cognitivecomputations/dolphin-2.6-mistral-7b-dpo"
      layer_range: [17, 18]
  - sources:
    - model: "cognitivecomputations/dolphin-2.6-mistral-7b-dpo"
      layer_range: [20, 24]
  - sources:
    - model: "cognitivecomputations/dolphin-2.6-mistral-7b-dpo"
      layer_range: [25, 32]
merge_method: passthrough
dtype: bfloat16

The model outputted by mergekit with this configuration is this model (dolphin-2.6-mistral-7b-dpo-5.93B).