Minbyul's picture
End of training
56f6bd4
metadata
license: apache-2.0
base_model: Minbyul/mistral-7b-wo-kqa_silver_wogold-sft
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: mistral-7b-dpo-full-sft-wo-kqa_silver_wogold
    results: []

mistral-7b-dpo-full-sft-wo-kqa_silver_wogold

This model is a fine-tuned version of Minbyul/mistral-7b-wo-kqa_silver_wogold-sft on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0530
  • Rewards/chosen: -2.4760
  • Rewards/rejected: -21.0723
  • Rewards/accuracies: 0.9700
  • Rewards/margins: 18.5963
  • Logps/rejected: -2709.2131
  • Logps/chosen: -407.7003
  • Logits/rejected: -2.0225
  • Logits/chosen: -2.2276

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.2735 0.32 100 0.0529 -1.3592 -8.1857 0.9700 6.8265 -1420.5509 -296.0260 -2.7457 -2.5375
0.1321 0.63 200 0.0507 -2.0405 -16.8511 0.9600 14.8106 -2287.0967 -364.1557 -2.2518 -2.3349
0.117 0.95 300 0.0531 -2.4855 -21.1345 0.9700 18.6490 -2715.4331 -408.6504 -2.0210 -2.2273

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.14.6
  • Tokenizers 0.15.2