metadata
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: mistral-7b-dpo-full-wo-kqa_golden-ep3
results: []
mistral-7b-dpo-full-wo-kqa_golden-ep3
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:
- Loss: 0.2182
- Rewards/chosen: -1.5510
- Rewards/rejected: -6.3512
- Rewards/accuracies: 0.875
- Rewards/margins: 4.8002
- Logps/rejected: -1537.8291
- Logps/chosen: -720.7828
- Logits/rejected: -2.8834
- Logits/chosen: -3.1394
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.1645 | 0.53 | 100 | 0.2503 | -1.6026 | -5.5026 | 0.8313 | 3.9001 | -1452.9772 | -725.9427 | -2.7934 | -3.0544 |
Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.2