Mizuiro-sakura's picture
Update README.md
f5d99d8
|
raw
history blame
3.69 kB
---
license: mit
language: ja
tags:
- luke
- pytorch
- transformers
- marcja
- marc-ja
- sentiment-analysis
- SentimentAnalysis
---
# このモデルはluke-japanese-baseをファインチューニングして、MARC-ja(positive or negativeの二値分類)に用いれるようにしたものです。
このモデルはluke-japanese-baseを
yahoo japan/JGLUEのMARC-ja( https://github.com/yahoojapan/JGLUE )
を用いてファインチューニングしたものです。
positive or negativeの二値分類タスクに用いることができます。
# This model is fine-tuned model for MARC-ja which is based on luke-japanese-base
This model is fine-tuned by using yahoo japan JGLUE MARC-ja dataset.
You could use this model for binary classification (positive or negative) tasks.
# モデルの精度 accuracy of model
precision : 0.967,
accuracy : 0.967,
recall : 0.967,
f1 : 0.967
既存のモデルの精度 accuracy of existing model
Tohoku BERT large 0.955
Waseda RoBERTa large (seq128) 0.954
Waseda RoBERTa large (seq512) 0.961
XLM RoBERTa large 0.964
# How to use 使い方
sentencepieceとtransformersをインストールして (pip install sentencepiece , pip install transformers)
以下のコードを実行することで、MARC-jaタスクを解かせることができます。
After install transformers and sentencepiec, please execute this code.
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
tokenizer = AutoTokenizer.from_pretrained('Mizuiro-sakura/luke-japanese-base-marcja')
model = AutoModelForSequenceClassification.from_pretrained('Mizuiro-sakura/luke-japanese-base-marcja')
text = 'この商品は素晴らしい!とても匂いが良く、満足でした。'
token = tokenizer.encode_plus(text, truncation=True, max_length=128, padding="max_length", return_tenosr='pt')
result = model(torch.tensor(token['input_ids']).unsqueeze(0), torch.tensor(token['attention_mask']).unsqueeze(0))
if torch.argmax(result['logits'])==0:
print('positive')
if torch.argmax(result['logits'])==1:
print('negative')
```
# what is Luke? Lukeとは?[1]
LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transformer. LUKE treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. LUKE adopts an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer, and considers the types of tokens (words or entities) when computing attention scores.
LUKE achieves state-of-the-art results on five popular NLP benchmarks including SQuAD v1.1 (extractive question answering), CoNLL-2003 (named entity recognition), ReCoRD (cloze-style question answering), TACRED (relation classification), and Open Entity (entity typing). luke-japaneseは、単語とエンティティの知識拡張型訓練済み Transformer モデルLUKEの日本語版です。LUKE は単語とエンティティを独立したトークンとして扱い、これらの文脈を考慮した表現を出力します。
# Acknowledgments 謝辞
Lukeの開発者である山田先生とStudio ousiaさんには感謝いたします。 I would like to thank Mr.Yamada @ikuyamada and Studio ousia @StudioOusia.
# Citation
[1]@inproceedings{yamada2020luke, title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention}, author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto}, booktitle={EMNLP}, year={2020} }