|
--- |
|
license: mit |
|
language: ja |
|
tags: |
|
- luke |
|
- pytorch |
|
- transformers |
|
- marcja |
|
- marc-ja |
|
- sentiment-analysis |
|
- SentimentAnalysis |
|
|
|
--- |
|
|
|
# このモデルはluke-japanese-baseをファインチューニングして、MARC-ja(positive or negativeの二値分類)に用いれるようにしたものです。 |
|
このモデルはluke-japanese-baseを |
|
yahoo japan/JGLUEのMARC-ja( https://github.com/yahoojapan/JGLUE ) |
|
を用いてファインチューニングしたものです。 |
|
|
|
positive or negativeの二値分類タスクに用いることができます。 |
|
|
|
# This model is fine-tuned model for MARC-ja which is based on luke-japanese-base |
|
|
|
This model is fine-tuned by using yahoo japan JGLUE MARC-ja dataset. |
|
|
|
You could use this model for binary classification (positive or negative) tasks. |
|
|
|
# モデルの精度 accuracy of model |
|
precision : 0.967, |
|
accuracy : 0.967, |
|
recall : 0.967, |
|
f1 : 0.967 |
|
|
|
既存のモデルの精度 accuracy of existing model |
|
|
|
Tohoku BERT large 0.955 |
|
|
|
Waseda RoBERTa large (seq128) 0.954 |
|
|
|
Waseda RoBERTa large (seq512) 0.961 |
|
|
|
XLM RoBERTa large 0.964 |
|
|
|
# How to use 使い方 |
|
sentencepieceとtransformersをインストールして (pip install sentencepiece , pip install transformers) |
|
以下のコードを実行することで、MARC-jaタスクを解かせることができます。 |
|
After install transformers and sentencepiec, please execute this code. |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('Mizuiro-sakura/luke-japanese-base-marcja') |
|
model = AutoModelForSequenceClassification.from_pretrained('Mizuiro-sakura/luke-japanese-base-marcja') |
|
|
|
text = 'この商品は素晴らしい!とても匂いが良く、満足でした。' |
|
|
|
token = tokenizer.encode_plus(text, truncation=True, max_length=128, padding="max_length", return_tenosr='pt') |
|
result = model(torch.tensor(token['input_ids']).unsqueeze(0), torch.tensor(token['attention_mask']).unsqueeze(0)) |
|
|
|
if torch.argmax(result['logits'])==0: |
|
print('positive') |
|
if torch.argmax(result['logits'])==1: |
|
print('negative') |
|
``` |
|
|
|
|
|
# what is Luke? Lukeとは?[1] |
|
LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transformer. LUKE treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. LUKE adopts an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer, and considers the types of tokens (words or entities) when computing attention scores. |
|
|
|
LUKE achieves state-of-the-art results on five popular NLP benchmarks including SQuAD v1.1 (extractive question answering), CoNLL-2003 (named entity recognition), ReCoRD (cloze-style question answering), TACRED (relation classification), and Open Entity (entity typing). luke-japaneseは、単語とエンティティの知識拡張型訓練済み Transformer モデルLUKEの日本語版です。LUKE は単語とエンティティを独立したトークンとして扱い、これらの文脈を考慮した表現を出力します。 |
|
|
|
# Acknowledgments 謝辞 |
|
Lukeの開発者である山田先生とStudio ousiaさんには感謝いたします。 I would like to thank Mr.Yamada @ikuyamada and Studio ousia @StudioOusia. |
|
|
|
# Citation |
|
[1]@inproceedings{yamada2020luke, title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention}, author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto}, booktitle={EMNLP}, year={2020} } |
|
|
|
|
|
|
|
|
|
|
|
|