Mizuiro-sakura's picture
Update README.md
06eea5f
---
license: mit
language: ja
datasets:
- kunishou/databricks-dolly-15k-ja
- wikipedia
- cc100
- mc4
tags:
- japanese
- causal-lm
- open-calm
inference: false
---
# OpenCALM-LARGE
## Model Description
OpenCALM is a suite of decoder-only language models pre-trained on Japanese datasets, developed by CyberAgent, Inc.
このモデルはpeftを用いてopen-calm-largeをLoRAファインチューニングしたものです。
## Usage
pytorchおよびtransformers, peftをインストールして下記コードを実行してください
(pip install torch, transformers, peft)
and please execute this code.
下記コードに関しては
npakaさんの記事(https://note.com/npaka/n/na5b8e6f749ce)
を参考にさせて頂きました。
感謝致します。
```python
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "cyberagent/open-calm-large"
lora_weights = "Mizuiro-sakura/open-calm-large-finetuned-databricks-dolly"
# モデルの準備
model = AutoModelForCausalLM.from_pretrained(
model_name
)
# トークンナイザーの準備
tokenizer = AutoTokenizer.from_pretrained(model_name)
# LoRAモデルの準備
model = PeftModel.from_pretrained(
model,
lora_weights,
adapter_name=lora_weights
)
# 評価モード
model.eval()
# プロンプトテンプレートの準備
def generate_prompt(data_point):
if data_point["input"]:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Input:
{data_point["input"]}
### Response:"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Response:"""
# テキスト生成関数の定義
def generate(instruction,input=None,maxTokens=256):
# 推論
prompt = generate_prompt({'instruction':instruction,'input':input})
input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids
outputs = model.generate(
input_ids=input_ids,
max_new_tokens=maxTokens,
do_sample=True,
temperature=0.7,
top_p=0.75,
top_k=40,
no_repeat_ngram_size=2,
)
outputs = outputs[0].tolist()
# EOSトークンにヒットしたらデコード完了
if tokenizer.eos_token_id in outputs:
eos_index = outputs.index(tokenizer.eos_token_id)
else:
eos_index = len(outputs)
decoded = tokenizer.decode(outputs[:eos_index])
# レスポンス内容のみ抽出
sentinel = "### Response:"
sentinelLoc = decoded.find(sentinel)
if sentinelLoc >= 0:
print(decoded[sentinelLoc+len(sentinel):])
else:
print('Warning: Expected prompt template to be emitted. Ignoring output.')
generate("自然言語処理とは?")
```
## Model Details
|Model|Params|Layers|Dim|Heads|Dev ppl|
|:---:|:---: |:---:|:---:|:---:|:---:|
|[cyberagent/open-calm-small](https://huggingface.co/cyberagent/open-calm-small)|160M|12|768|12|19.7|
|[cyberagent/open-calm-medium](https://huggingface.co/cyberagent/open-calm-medium)|400M|24|1024|16|13.8|
|[cyberagent/open-calm-large](https://huggingface.co/cyberagent/open-calm-large)|830M|24|1536|16|11.3|
|[cyberagent/open-calm-1b](https://huggingface.co/cyberagent/open-calm-1b)|1.4B|24|2048|16|10.3|
|[cyberagent/open-calm-3b](https://huggingface.co/cyberagent/open-calm-3b)|2.7B|32|2560|32|9.7|
|[cyberagent/open-calm-7b](https://huggingface.co/cyberagent/open-calm-7b)|6.8B|32|4096|32|8.2|
* **Developed by**: [CyberAgent, Inc.](https://www.cyberagent.co.jp/)
* **Model type**: Transformer-based Language Model
* **Language**: Japanese
* **Library**: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox)
* **License**: OpenCALM is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License ([CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/)). When using this model, please provide appropriate credit to CyberAgent, Inc.
* Example (en): This model is a fine-tuned version of OpenCALM-XX developed by CyberAgent, Inc. The original model is released under the CC BY-SA 4.0 license, and this model is also released under the same CC BY-SA 4.0 license. For more information, please visit: https://creativecommons.org/licenses/by-sa/4.0/
* Example (ja): 本モデルは、株式会社サイバーエージェントによるOpenCALM-XXをファインチューニングしたものです。元のモデルはCC BY-SA 4.0ライセンスのもとで公開されており、本モデルも同じくCC BY-SA 4.0ライセンスで公開します。詳しくはこちらをご覧ください: https://creativecommons.org/licenses/by-sa/4.0/
## Training Dataset
* Wikipedia (ja)
* Common Crawl (ja)
## Author
[Ryosuke Ishigami](https://huggingface.co/rishigami)
## Citations
```bibtext
@software{gpt-neox-library,
title = {{GPT-NeoX: Large Scale Autoregressive Language Modeling in PyTorch}},
author = {Andonian, Alex and Anthony, Quentin and Biderman, Stella and Black, Sid and Gali, Preetham and Gao, Leo and Hallahan, Eric and Levy-Kramer, Josh and Leahy, Connor and Nestler, Lucas and Parker, Kip and Pieler, Michael and Purohit, Shivanshu and Songz, Tri and Phil, Wang and Weinbach, Samuel},
url = {https://www.github.com/eleutherai/gpt-neox},
doi = {10.5281/zenodo.5879544},
month = {8},
year = {2021},
version = {0.0.1},
}
```