metadata
tags:
- gptq
- 4bit
- gptqmodel
- modelcloud
- llama-3.1
- 8b
- instruct
This model has been quantized using GPTQModel.
- bits: 4
- group_size: 128
- desc_act: true
- static_groups: false
- sym: true
- lm_head: false
- damp_percent: 0.01
- true_sequential: true
- model_name_or_path: ""
- model_file_base_name: "model"
- quant_method: "gptq"
- checkpoint_format: "gptq"
- meta:
- quantizer: "gptqmodel:0.9.9-dev0"
Here is an example:
from transformers import AutoTokenizer
from gptqmodel import GPTQModel
model_name = "ModelCloud/Meta-Llama-3.1-8B-Instruct-gptq-4bit"
prompt = [{"role": "user", "content": "I am in Shanghai, preparing to visit the natural history museum. Can you tell me the best way to"}]
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = GPTQModel.from_quantized(model_name)
inputs = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
outputs = model.generate(prompts=inputs, temperature=0.95, max_length=128)
print(outputs[0].outputs[0].text)