MARBERT-QADI

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0342
  • Macro F1: 0.5099
  • Accuracy: 0.5138
  • Recall: 0.5136
  • Precision: 0.6223

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-06
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Macro F1 Accuracy Recall Precision
0.8588 1.0 1125 0.7883 0.7550 0.7554 0.7552 0.7609
0.7475 2.0 2250 0.7718 0.7632 0.7634 0.7631 0.7653
0.6527 3.0 3375 0.7758 0.7668 0.7673 0.7671 0.7679
0.5654 4.0 4500 0.7845 0.7665 0.7673 0.7671 0.7682
0.5001 5.0 5625 0.8068 0.7650 0.7663 0.7660 0.7657
0.4641 6.0 6750 0.8216 0.7647 0.7658 0.7655 0.7650
0.4049 7.0 7875 0.8393 0.7645 0.7654 0.7649 0.7657
0.3773 8.0 9000 0.8477 0.7651 0.7657 0.7654 0.7659
0.3393 9.0 10125 0.8569 0.7663 0.7669 0.7665 0.7670
0.3383 10.0 11250 0.8589 0.7663 0.7669 0.7666 0.7667

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
19
Safetensors
Model size
163M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.