Leveraging Large Language Models for Metagenomic Analysis
Model Overview: This model builds on the RoBERTa architecture with a similar approach to our paper titled "Leveraging Large Language Models for Metagenomic Analysis." The model was trained for one epoch on V100 GPUs.
Model Architecture:
- Base Model: RoBERTa transformer architecture
- Tokenizer: Custom K-mer Tokenizer with k-mer length of 6 and overlapping tokens
- Training: Trained on a diverse dataset of 220 million 400bp fragments from 18k genomes (Bacteria and Archaea))
Steps to Use the Model:
Install KmerTokenizer:
pip install git+https://github.com/MsAlEhR/KmerTokenizer.git
Example Code:
from KmerTokenizer import KmerTokenizer from transformers import AutoModel import torch # Example gene sequence seq = "ATTTTTTTTTTTCCCCCCCCCCCGGGGGGGGATCGATGC" # Initialize the tokenizer tokenizer = KmerTokenizer(kmerlen=6, overlapping=True, maxlen=400) tokenized_output = tokenizer.kmer_tokenize(seq) pad_token_id = 2 # Set pad token ID # Create attention mask (1 for tokens, 0 for padding) attention_mask = torch.tensor([1 if token != pad_token_id else 0 for token in tokenized_output], dtype=torch.long).unsqueeze(0) # Convert tokenized output to LongTensor and add batch dimension inputs = torch.tensor([tokenized_output], dtype=torch.long) # Load the pre-trained BigBird model model = AutoModel.from_pretrained("MsAlEhR/MetaBerta-400-fragments-18k-genome", output_hidden_states=True) # Generate hidden states outputs = model(input_ids=inputs, attention_mask=attention_mask) # Get embeddings from the last hidden state embeddings = outputs.hidden_states[-1] # Expand attention mask to match the embedding dimensions expanded_attention_mask = attention_mask.unsqueeze(-1) # Compute mean sequence embeddings mean_sequence_embeddings = torch.sum(expanded_attention_mask * embeddings, dim=1) / torch.sum(expanded_attention_mask, dim=1)
Citation: For a detailed overview of leveraging large language models for metagenomic analysis, refer to our paper:
Refahi, M.S., Sokhansanj, B.A., & Rosen, G.L. (2023). Leveraging Large Language Models for Metagenomic Analysis. IEEE SPMB.
Refahi, M., Sokhansanj, B.A., Mell, J.C., Brown, J., Yoo, H., Hearne, G. and Rosen, G., 2024. Scorpio: Enhancing Embeddings to Improve Downstream Analysis of DNA sequences. bioRxiv, pp.2024-07.
- Downloads last month
- 4