File size: 55,801 Bytes
4b66b8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:900
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: '["Vendor Risk Assessment\n\nView\n\nBreach Management\n\nView\n\nPrivacy
    Policy Management\n\nView\n\nPrivacy Center\n\nView\n\nLearn more\n\nSecurity\n\nIdentify
    data risk and enable protection & control\n\nData Security Posture Management\n\nView\n\nData
    Access Intelligence & Governance\n\nView\n\nData Risk Management\n\nView\n\nData
    Breach Analysis\n\nView\n\nLearn more\n\nGovernance\n\nOptimize Data Governance
    with granular insights into your data\n\nData Catalog\n\nView\n\nData Lineage\n\nView\n\nData
    Quality\n\nView\n\nData Controls Orchestrator\n\nView\n\nSolutions\n\nTechnologies\n\nCovering
    you everywhere with 1000+ integrations across data systems.\n\nSnowflake\n\nView\n\nAWS\n\nView\n\nMicrosoft
    365\n\nView\n\nSalesforce\n\nView\n\nWorkday\n\nView\n\nGCP\n\nView\n\nAzure\n\nView\n\nOracle\n\nView\n\nLearn
    more\n\nRegulations\n\nAutomate compliance with global privacy regulations.\n\nUS
    California CCPA\n\nView\n\nUS California CPRA\n\nView\n\nEuropean Union GDPR\n\nView\n\nThailand’s
    PDPA\n\nView\n\nChina PIPL\n\nView\n\nCanada PIPEDA\n\nView\n\nBrazil''s LGPD\n\nView\n\n\\+
    More\n\nView\n\nLearn more\n\nRoles\n\nIdentify data risk and enable protection
    & control.\n\nPrivacy\n\nView\n\nSecurity\n\nView\n\nGovernance\n\nView\n\nMarketing\n\nView\n\nResources\n\nBlog\n\nRead
    through our articles written by industry experts\n\nCollateral\n\nProduct brochures,
    white papers, infographics, analyst reports and more.\n\nKnowledge Center\n\nLearn
    about the data privacy, security and governance landscape.\n\nSecuriti Education\n\nCourses
    and Certifications for data privacy, security and governance professionals.\n\nCompany\n\nAbout
    Us\n\nLearn all about Securiti, our mission and history\n\nPartner Program\n\nJoin
    our Partner Program\n\nContact Us\n\nContact us to learn more or schedule a demo\n\nNews
    Coverage\n\nRead about Securiti in the news\n\nPress Releases\n\nFind our latest
    press releases\n\nCareers\n\nJoin the"]'
  sentences:
  - What is the purpose of tracking changes and transformations of data throughout
    its lifecycle?
  - What is the role of ePD in the European privacy regime and its relation to GDPR?
  - How can data governance be optimized using granular insights?
- source_sentence: '[''Learn more\n\nAsset and Data Discovery\n\nDiscover dark and
    native data assets\n\nLearn more\n\nData Access Intelligence & Governance\n\nIdentify
    which users have access to sensitive data and prevent unauthorized access\n\nLearn
    more\n\nData Privacy Automation\n\nPrivacyCenter.Cloud | Data Mapping | DSR Automation
    | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice\n\nLearn
    more\n\nSensitive Data Intelligence\n\nDiscover & Classify Structured and Unstructured
    Data | People Data Graph\n\nLearn more\n\nData Flow Intelligence & Governance\n\nPrevent
    sensitive data sprawl through real-time streaming platforms\n\nLearn more\n\nData
    Consent Automation\n\nFirst Party Consent | Third Party & Cookie Consent\n\nLearn
    more\n\nData Security Posture Management\n\nSecure sensitive data in hybrid multicloud
    and SaaS environments\n\nLearn more\n\nData Breach Impact Analysis & Response\n\nAnalyze
    impact of a data breach and coordinate response per global regulatory obligations\n\nLearn
    more\n\nData Catalog\n\nAutomatically catalog datasets and enable users to find,
    understand, trust and access data\n\nLearn more\n\nData Lineage\n\nTrack changes
    and transformations of data throughout its lifecycle\n\nData Controls Orchestrator\n\nView\n\nData
    Command Center\n\nView\n\nSensitive Data Intelligence\n\nView\n\nAsset Discovery\n\nData
    Discovery & Classification\n\nSensitive Data Catalog\n\nPeople Data Graph\n\nLearn
    more\n\nPrivacy\n\nAutomate compliance with global privacy regulations\n\nData
    Mapping Automation\n\nView\n\nData Subject Request Automation\n\nView\n\nPeople
    Data Graph\n\nView\n\nAssessment Automation\n\nView\n\nCookie Consent\n\nView\n\nUniversal
    Consent\n\nView\n\nVendor Risk Assessment\n\nView\n\nBreach Management\n\nView\n\nPrivacy
    Policy Management\n\nView\n\nPrivacy Center\n\nView\n\nLearn more\n\nSecurity\n\nIdentify
    data risk and enable protection & control\n\nData Security Posture Management\n\nView\n\nData
    Access Intelligence & Governance\n\nView\n\nData Risk Management\n\nView\n\nData
    Breach Analysis\n\nView\n\nLearn more\n\nGovernance\n\nOptimize Data Governance
    with granular insights into your data\n\nData Catalog\n\nView\n\nData Lineage\n\nView\n\nData
    Quality\n\nView\n\nData Controls Orchestrator\n\n'', ''\n\nView\n\nLearn more\n\nAsset
    and Data Discovery\n\nDiscover dark and native data assets\n\nLearn more\n\nData
    Access Intelligence & Governance\n\nIdentify which users have access to sensitive
    data and prevent unauthorized access\n\nLearn more\n\nData Privacy Automation\n\nPrivacyCenter.Cloud
    | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment |
    Breach Management | Privacy Notice\n\nLearn more\n\nSensitive Data Intelligence\n\nDiscover
    & Classify Structured and Unstructured Data | People Data Graph\n\nLearn more\n\nData
    Flow Intelligence & Governance\n\nPrevent sensitive data sprawl through real-time
    streaming platforms\n\nLearn more\n\nData Consent Automation\n\nFirst Party Consent
    | Third Party & Cookie Consent\n\nLearn more\n\nData Security Posture Management\n\nSecure
    sensitive data in hybrid multicloud and SaaS environments\n\nLearn more\n\nData
    Breach Impact Analysis & Response\n\nAnalyze impact of a data breach and coordinate
    response per global regulatory obligations\n\nLearn more\n\nData Catalog\n\nAutomatically
    catalog datasets and enable users to find, understand, trust and access data\n\nLearn
    more\n\nData Lineage\n\nTrack changes and transformations of data throughout its
    lifecycle\n\nData Controls Orchestrator\n\nView\n\nData Command Center\n\nView\n\nSensitive
    Data Intelligence\n\nView\n\nAsset Discovery\n\nData Discovery & Classification\n\nSensitive
    Data Catalog\n\nPeople Data Graph\n\nLearn more\n\nPrivacy\n\nAutomate compliance
    with global privacy regulations\n\nData Mapping Automation\n\nView\n\nData Subject
    Request Automation\n\nView\n\nPeople Data Graph\n\nView\n\nAssessment Automation\n\nView\n\nCookie
    Consent\n\nView\n\nUniversal Consent\n\nView\n\nVendor Risk Assessment\n\nView\n\nBreach
    Management\n\nView\n\nPrivacy Policy Management\n\nView\n\nPrivacy Center\n\nView\n\nLearn
    more\n\nSecurity\n\nIdentify data risk and enable protection & control\n\nData
    Security Posture Management\n\nView\n\nData Access Intelligence & Governance\n\nView\n\nData
    Risk Management\n\nView\n\nData Breach Analysis\n\nView\n\nLearn more\n\nGovernance\n\nOptimize
    Data Governance with granular insights into your data\n\nData Catalog\n\nView\n\nData
    Lineage\n\nView\n\nData Quality\n\nView\n\nData Controls'']'
  sentences:
  - What is the purpose of Asset and Data Discovery in data governance and security?
  - Which EU member states have strict cyber laws?
  - What is the obligation for organizations to provide Data Protection Impact Assessments
    (DPIAs) under the LGPD?
- source_sentence: '['' which the data is processed.\n\n**Right to Access:** Data
    subjects have the right to obtain confirmation whether or not the controller holds
    personal data about them, access their personal data, and obtain descriptions
    of data recipients.\n\n**Right to Rectification** : Under the right to rectification,
    data subjects can request the correction of their data.\n\n**Right to Erasure:**
    Data subjects have the right to request the erasure and destruction of the data
    that is no longer needed by the organization.\n\n**Right to Object:** The data
    subject has the right to prevent the data controller from processing personal
    data if such processing causes or is likely to cause unwarranted damage or distress
    to the data subject.\n\n**Right not to be Subjected to Automated Decision-Making**
    : The data subject has the right to not be subject to automated decision-making
    that significantly affects the individual.\n\n## Facts related to Ghana’s Data
    Protection Act 2012\n\n1\n\nWhile processing personal data, organizations must
    comply with eight privacy principles: lawfulness of processing, data quality,
    security measures, accountability, purpose specification, purpose limitation,
    openness, and data subject participation.\n\n2\n\nIn the event of a security breach,
    the data controller shall take measures to prevent the breach and notify the Commission
    and the data subject about the breach as soon as reasonably practicable after
    the discovery of the breach.\n\n3\n\nThe DPA specifies lawful grounds for data
    processing, including data subject’s consent, the performance of a contract, the
    interest of data subject and public interest, lawful obligations, and the legitimate
    interest of the data controller.\n\n4\n\nThe DPA requires data controllers to
    register with the Data Protection Commission (DPC).\n\n5\n\nThe DPA provides varying
    fines and terms of imprisonment according to the severity and sensitivity of the
    violation, such as any person who sells personal data may get fined up to 2500
    penalty units or up to five years imprisonment or both.\n\n### Forrester Names
    Securiti a Leader in the Privacy Management Wave Q4, 2021\n\nRead the Report\n\n###
    Securiti named a Leader in the IDC MarketScape for Data Privacy Compliance Software\n\nRead
    the Report\n\nAt Securiti, our mission is to enable enterprises to safely harness
    the incredible power of data and the cloud by controlling the complex security,
    privacy and compliance risks.\n\nCopyright (C) 2023 Securiti\n\nSitem'']'
  sentences:
  - What information is required for data subjects regarding data transfers under
    the GDPR, including personal data categories, data recipients, retention period,
    and automated decision making?
  - What privacy principles must organizations follow when processing personal data
    under Ghana's Data Protection Act 2012?
  - What is the purpose of Thailand's PDPA?
- source_sentence: '[" consumer has the right to have his/her personal data stored
    or processed by the data controller be deleted.\n\n## Portability\n\nThe consumer
    has a right to obtain a copy of his/her personal data in a portable, technically
    feasible and readily usable format that allows the consumer to transmit the data
    to another controller without hindrance.\n\n## Opt\n\nout\n\nThe consumer has
    the right to opt out of the processing of the personal data for purposes of targeted
    advertising, the sale of personal data, or profiling in furtherance of decisions
    that produce legal or similarly significant effects concerning the consumer.\n\n**Time
    period to fulfill DSR request:\n\n** All data subject rights’ requests (DSR requests)
    must be fulfilled by the data controller within a 45 day period.\n\n**Extension
    in time period:\n\n** data controllers may seek for an extension of 45 days in
    fulfilling the request depending on the complexity and number of the consumer''s
    requests.\n\n**Denial of DSR request:\n\n** If a DSR request is to be denied,
    the data controller must inform the consumer of the reasons within a 45 days period.\n\n**Appeal
    against refusal:\n\n** Consumers have a right to appeal the decision for refusal
    of grant of the DSR request. The appeal must be decided within 45 days but the
    time period can be further extended by 60 additional days.\n\n**Limitation of
    DSR requests per year:\n\n** Requests for data portability may be made only twice
    in a year.\n\n**Charges:\n\n** DSR requests must be fulfilled free of charge once
    in a year. Any subsequent request within a 12 month period can be charged.\n\n**Authentication:\n\n**
    A data controller is not to respond to a consumer request unless it can authenticate
    the request using reasonably commercial means. A data controller can request additional
    information from the consumer for the purposes of authenticating the request.\n\n##
    Who must comply?\n\nCPA applies to all data controllers who conduct business in
    Colorado or produce or deliver commercial products or services that are intentionally
    targeted to residents of Colorado\n\nif they match any one or both of these conditions:\n\nIf
    they control or process the personal data of 100,000 consumers or more during
    a calendar year; or\n\nIf they derive revenue or receive a discount on the price
    of goods or services from the sale of personal data and process or control the
    personal data of 25,000"]'
  sentences:
  - What is the US California CCPA and how does it relate to data privacy regulations?
  - What does the People Data Graph serve in terms of privacy, security, and governance?
  - What rights does a consumer have regarding the portability of their personal data?
- source_sentence: '["PR and Federal Data Protection Act within Germany;\n\nTo promote
    awareness within the public related to the risks, rules, safeguards, and rights
    concerning the processing of personal data;\n\nTo handle all complaints raised
    by data subjects related to data processing in addition to carrying out investigations
    to find out if any data handler has breached any provisions of the Act;\n\n##
    Penalties for Non\n\ncompliance\n\nThe GDPR already laid down some stringent penalties
    for companies that would be found in breach of the law''s provisions. More importantly,
    as opposed to other data protection laws such as the CCPA and CPRA, non-compliance
    with the law also meant penalties.\n\nGermany''s Federal Data Protection Act has
    a slightly more lenient take in this regard. Suppose a data handler is found to
    have fraudulently collected data, processed, shared, or sold data without proper
    consent from the data subjects, not responded or responded with delay to a data
    subject request, or failed to inform the data subject of a breach properly. In
    that case, it can be fined up to €50,000.\n\nThis is in addition to the GDPR''s
    €20 million or 4% of the total worldwide annual turnover of the preceding financial
    year, whichever is higher, that any organisation found in breach of the law is
    subject to.\n\nHowever, for this fine to be applied, either the data subject,
    the Federal Commissioner, or the regulatory authority must file an official complaint.\n\n##
    How an Organization Can Operationalize the Law\n\nData handlers processing data
    inside Germany can remain compliant with the country''s data protection law if
    they fulfill the following conditions:\n\nHave a comprehensive privacy policy
    that educates all users of their rights and how to contact the relevant personnel
    within the organisation in case of a query\n\nHire a competent Data Protection
    Officer that understands the GDPR and Federal Data Protection Act thoroughly and
    can lead compliance efforts within your organisation\n\nEnsure all the company''s
    employees and staff are acutely aware of their responsibilities under the law\n\nConduct
    regular data protection impact assessments as well as data mapping exercises to
    ensure maximum efficiency in your compliance efforts\n\nNotify the relevant authorities
    of a data breach as soon as possible\n\n## How can Securiti Help\n\nData privacy
    and compliance have become incredibly vital in earning users'' trust globally.
    Most users now expect most businesses to take all the relevant measures to ensure
    the data they collect is properly stored, protected, and maintained. Data protection
    laws have made such efforts legally mandatory"]'
  sentences:
  - How does Data Access Intelligence & Governance prevent unauthorized access to
    sensitive data?
  - What is required for an official complaint to be filed under Germany's Federal
    Data Protection Act?
  - Why is tracking data lineage important for data management and security?
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.07
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.26
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.44
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.63
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.07
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.08666666666666668
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.088
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06299999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.07
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.26
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.44
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.63
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3150525932481703
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.2180119047619047
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.23183767291183585
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.06
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.24
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.44
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.06
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.07999999999999999
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.088
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.059999999999999984
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.06
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.24
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.44
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2944478644544164
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.19998809523809516
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.21493741340512212
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.07
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.21
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.4
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.07
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.06999999999999999
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.08
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.059999999999999984
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.07
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.21
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.4
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.29018137407094874
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.19626984126984123
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.21169474427113727
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.07
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.17
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.32
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.53
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.07
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.056666666666666664
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.064
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05299999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.07
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.17
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.32
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.53
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2594266732084936
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.17759523809523803
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.194555422694347
      name: Cosine Map@100
---

# SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-1-v8")
# Run inference
sentences = [
    '["PR and Federal Data Protection Act within Germany;\\n\\nTo promote awareness within the public related to the risks, rules, safeguards, and rights concerning the processing of personal data;\\n\\nTo handle all complaints raised by data subjects related to data processing in addition to carrying out investigations to find out if any data handler has breached any provisions of the Act;\\n\\n## Penalties for Non\\n\\ncompliance\\n\\nThe GDPR already laid down some stringent penalties for companies that would be found in breach of the law\'s provisions. More importantly, as opposed to other data protection laws such as the CCPA and CPRA, non-compliance with the law also meant penalties.\\n\\nGermany\'s Federal Data Protection Act has a slightly more lenient take in this regard. Suppose a data handler is found to have fraudulently collected data, processed, shared, or sold data without proper consent from the data subjects, not responded or responded with delay to a data subject request, or failed to inform the data subject of a breach properly. In that case, it can be fined up to €50,000.\\n\\nThis is in addition to the GDPR\'s €20 million or 4% of the total worldwide annual turnover of the preceding financial year, whichever is higher, that any organisation found in breach of the law is subject to.\\n\\nHowever, for this fine to be applied, either the data subject, the Federal Commissioner, or the regulatory authority must file an official complaint.\\n\\n## How an Organization Can Operationalize the Law\\n\\nData handlers processing data inside Germany can remain compliant with the country\'s data protection law if they fulfill the following conditions:\\n\\nHave a comprehensive privacy policy that educates all users of their rights and how to contact the relevant personnel within the organisation in case of a query\\n\\nHire a competent Data Protection Officer that understands the GDPR and Federal Data Protection Act thoroughly and can lead compliance efforts within your organisation\\n\\nEnsure all the company\'s employees and staff are acutely aware of their responsibilities under the law\\n\\nConduct regular data protection impact assessments as well as data mapping exercises to ensure maximum efficiency in your compliance efforts\\n\\nNotify the relevant authorities of a data breach as soon as possible\\n\\n## How can Securiti Help\\n\\nData privacy and compliance have become incredibly vital in earning users\' trust globally. Most users now expect most businesses to take all the relevant measures to ensure the data they collect is properly stored, protected, and maintained. Data protection laws have made such efforts legally mandatory"]',
    "What is required for an official complaint to be filed under Germany's Federal Data Protection Act?",
    'Why is tracking data lineage important for data management and security?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.07       |
| cosine_accuracy@3   | 0.26       |
| cosine_accuracy@5   | 0.44       |
| cosine_accuracy@10  | 0.63       |
| cosine_precision@1  | 0.07       |
| cosine_precision@3  | 0.0867     |
| cosine_precision@5  | 0.088      |
| cosine_precision@10 | 0.063      |
| cosine_recall@1     | 0.07       |
| cosine_recall@3     | 0.26       |
| cosine_recall@5     | 0.44       |
| cosine_recall@10    | 0.63       |
| cosine_ndcg@10      | 0.3151     |
| cosine_mrr@10       | 0.218      |
| **cosine_map@100**  | **0.2318** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.06       |
| cosine_accuracy@3   | 0.24       |
| cosine_accuracy@5   | 0.44       |
| cosine_accuracy@10  | 0.6        |
| cosine_precision@1  | 0.06       |
| cosine_precision@3  | 0.08       |
| cosine_precision@5  | 0.088      |
| cosine_precision@10 | 0.06       |
| cosine_recall@1     | 0.06       |
| cosine_recall@3     | 0.24       |
| cosine_recall@5     | 0.44       |
| cosine_recall@10    | 0.6        |
| cosine_ndcg@10      | 0.2944     |
| cosine_mrr@10       | 0.2        |
| **cosine_map@100**  | **0.2149** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.07       |
| cosine_accuracy@3   | 0.21       |
| cosine_accuracy@5   | 0.4        |
| cosine_accuracy@10  | 0.6        |
| cosine_precision@1  | 0.07       |
| cosine_precision@3  | 0.07       |
| cosine_precision@5  | 0.08       |
| cosine_precision@10 | 0.06       |
| cosine_recall@1     | 0.07       |
| cosine_recall@3     | 0.21       |
| cosine_recall@5     | 0.4        |
| cosine_recall@10    | 0.6        |
| cosine_ndcg@10      | 0.2902     |
| cosine_mrr@10       | 0.1963     |
| **cosine_map@100**  | **0.2117** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.07       |
| cosine_accuracy@3   | 0.17       |
| cosine_accuracy@5   | 0.32       |
| cosine_accuracy@10  | 0.53       |
| cosine_precision@1  | 0.07       |
| cosine_precision@3  | 0.0567     |
| cosine_precision@5  | 0.064      |
| cosine_precision@10 | 0.053      |
| cosine_recall@1     | 0.07       |
| cosine_recall@3     | 0.17       |
| cosine_recall@5     | 0.32       |
| cosine_recall@10    | 0.53       |
| cosine_ndcg@10      | 0.2594     |
| cosine_mrr@10       | 0.1776     |
| **cosine_map@100**  | **0.1946** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 900 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                             | anchor                                                                            |
  |:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                               | string                                                                            |
  | details | <ul><li>min: 512 tokens</li><li>mean: 512.0 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 22.05 tokens</li><li>max: 82 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | anchor                                                                                                  |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------|
  | <code>["orra\n\nThe Andorra personal data protection act came into force on May 17, 2022, by the Andorra Data Protection Authority (ADPA). Learn more about Andorra PDPA\n\n### United Kingdom\n\nThe UK Data Protection Act (DPA) 2018 is the amended version of the Data Protection Act that was passed in 1998. The DPA 2018 implements the GDPR with several additions and restrictions. Learn more about UK DPA\n\n### Botswana\n\nThe Botswana Data Protection came into effect on October 15, 2021 after the issuance of the Data Protection Act (Commencement Date) Order 2021 by the Minister of Presidential Affairs, Governance and Public Administration. Learn more about Botswana DPA\n\n### Zambia\n\nOn March 31, 2021, the Zambian parliament formally passed the Data Protection Act No. 3 of 2021 and the Electronic Communications and Transactions Act No. 4 of 2021. Learn more about Zambia DPA\n\n### Jamaica\n\nOn November 30, 2020, the First Schedule of the Data Protection Act No. 7 of 2020 came into effect following the publication of Supplement No. 160 of Volume CXLIV in the Jamaica Gazette Supplement. Learn more about Jamaica DPA\n\n### Belarus\n\nThe Law on Personal Data Protection of May 7, 2021, No. 99-Z, entered into effect within Belarus on November 15, 2021. Learn more about Belarus DPA\n\n### Russian Federation\n\nThe primary Russian law on data protection, Federal Law No. 152-FZ has been in effect since July 2006. Learn more\n\n### Eswatini\n\nOn March 4, 2022, the Eswatini Communications Commission published the Data Protection Act No. 5 of 2022, simultaneously announcing its immediate enforcement. Learn more\n\n### Oman\n\nThe Royal Decree 6/2022 promulgating the Personal Data Protection Law (PDPL) was passed on February 9, 2022. Learn more\n\n### Sri Lanka\n\nSri Lanka's parliament formally passed the Personal Data Protection Act (PDPA), No. 9 Of 2022, on March 19, 2022. Learn more\n\n### Kuwait\n\nKuwait's DPPR was formally introduced by the CITRA to ensure the Gulf country's data privacy infrastructure. Learn more\n\n### Brunei Darussalam\n\nThe draft Personal Data Protection Order is Brunei’s primary data protection law which came into effect in 2022. Learn more\n\n### India\n\nIndia’"]</code>                                                                                                                                                                                                                                                                                                                                                                                                                                      | <code>What is the name of India's data protection law before May 17, 2022?</code>                       |
  | <code>[' the affected data subjects and regulatory authority about the breach and whether any of their information has been compromised as a result.\n\n### Data Protection Impact Assessment\n\nThere is no requirement for conducting data protection impact assessment under the PDPA.\n\n### Record of Processing Activities\n\nA data controller must keep and maintain a record of any privacy notice, data subject request, or any other information relating to personal data processed by him in the form and manner that may be determined by the regulatory authority.\n\n### Cross Border Data Transfer Requirements\n\nThe PDPA provides that personal data can be transferred out of Malaysia only when the recipient country is specified as adequate in the Official Gazette. The personal data of data subjects can not be disclosed without the consent of the data subject. The PDPA provides the following exceptions to the cross border data transfer requirements:\n\nWhere the consent of data subject is obtained for transfer; or\n\nWhere the transfer is necessary for the performance of contract between the parties;\n\nThe transfer is for the purpose of any legal proceedings or for the purpose of obtaining legal advice or for establishing, exercising or defending legal rights;\n\nThe data user has taken all reasonable precautions and exercised all due diligence to ensure that the personal data will not in that place be processed in any manner which, if that place is Malaysia, would be a contravention of this PDPA;\n\nThe transfer is necessary in order to protect the vital interests of the data subject; or\n\nThe transfer is necessary as being in the public interest in circumstances as determined by the Minister.\n\n## Data Subject Rights\n\nThe data subjects or the person whose data is being collected has certain rights under the PDPA. The most prominent rights can be categorized under the following:\n\n## Right to withdraw consent\n\nThe PDPA, like some of the other landmark data protection laws such as CPRA and GDPR gives data subjects the right to revoke their consent at any time by way of written notice from having their data collected processed.\n\n## Right to access and rectification\n\nAs per this right, anyone whose data has been collected has the right to request to review their personal data and have it updated. The onus is on the data handlers to respond to such a request as soon as possible while also making it easier for data subjects on how they can request access to their personal data.\n\n## Right to data portability\n\nData subjects have the right to request that their data be stored in a manner where it']</code> | <code>What is the requirement for conducting a data protection impact assessment under the PDPA?</code> |
  | <code>[" more\n\nPrivacy\n\nAutomate compliance with global privacy regulations\n\nData Mapping Automation\n\nView\n\nData Subject Request Automation\n\nView\n\nPeople Data Graph\n\nView\n\nAssessment Automation\n\nView\n\nCookie Consent\n\nView\n\nUniversal Consent\n\nView\n\nVendor Risk Assessment\n\nView\n\nBreach Management\n\nView\n\nPrivacy Policy Management\n\nView\n\nPrivacy Center\n\nView\n\nLearn more\n\nSecurity\n\nIdentify data risk and enable protection & control\n\nData Security Posture Management\n\nView\n\nData Access Intelligence & Governance\n\nView\n\nData Risk Management\n\nView\n\nData Breach Analysis\n\nView\n\nLearn more\n\nGovernance\n\nOptimize Data Governance with granular insights into your data\n\nData Catalog\n\nView\n\nData Lineage\n\nView\n\nData Quality\n\nView\n\nData Controls Orchestrator\n\nView\n\nSolutions\n\nTechnologies\n\nCovering you everywhere with 1000+ integrations across data systems.\n\nSnowflake\n\nView\n\nAWS\n\nView\n\nMicrosoft 365\n\nView\n\nSalesforce\n\nView\n\nWorkday\n\nView\n\nGCP\n\nView\n\nAzure\n\nView\n\nOracle\n\nView\n\nLearn more\n\nRegulations\n\nAutomate compliance with global privacy regulations.\n\nUS California CCPA\n\nView\n\nUS California CPRA\n\nView\n\nEuropean Union GDPR\n\nView\n\nThailand’s PDPA\n\nView\n\nChina PIPL\n\nView\n\nCanada PIPEDA\n\nView\n\nBrazil's LGPD\n\nView\n\n\\+ More\n\nView\n\nLearn more\n\nRoles\n\nIdentify data risk and enable protection & control.\n\nPrivacy\n\nView\n\nSecurity\n\nView\n\nGovernance\n\nView\n\nMarketing\n\nView\n\nResources\n\nBlog\n\nRead through our articles written by industry experts\n\nCollateral\n\nProduct brochures, white papers, infographics, analyst reports and more.\n\nKnowledge Center\n\nLearn about the data privacy, security and governance landscape.\n\nSecuriti Education\n\nCourses and Certifications for data privacy, security and governance professionals.\n\nCompany\n\nAbout Us\n\nLearn all about"]</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <code>What is Data Subject Request Automation?</code>                                                   |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step    | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 |
|:-------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.3448  | 10      | 7.9428        | -                      | -                      | -                      | -                     |
| 0.6897  | 20      | 6.0138        | -                      | -                      | -                      | -                     |
| 1.0     | 29      | -             | 0.2011                 | 0.2099                 | 0.2307                 | 0.1829                |
| 1.0345  | 30      | 5.4431        | -                      | -                      | -                      | -                     |
| 1.3793  | 40      | 4.4675        | -                      | -                      | -                      | -                     |
| 1.7241  | 50      | 3.7435        | -                      | -                      | -                      | -                     |
| 2.0     | 58      | -             | 0.2092                 | 0.2161                 | 0.2341                 | 0.1983                |
| 2.0690  | 60      | 3.6676        | -                      | -                      | -                      | -                     |
| 2.4138  | 70      | 3.0414        | -                      | -                      | -                      | -                     |
| 2.7586  | 80      | 2.5451        | -                      | -                      | -                      | -                     |
| 3.0     | 87      | -             | 0.2091                 | 0.2137                 | 0.2426                 | 0.1868                |
| 3.1034  | 90      | 2.7694        | -                      | -                      | -                      | -                     |
| 3.4483  | 100     | 2.3624        | -                      | -                      | -                      | -                     |
| 3.7931  | 110     | 2.1016        | -                      | -                      | -                      | -                     |
| **4.0** | **116** | **-**         | **0.2139**             | **0.2137**             | **0.2271**             | **0.1964**            |
| 4.1379  | 120     | 2.3842        | -                      | -                      | -                      | -                     |
| 4.4828  | 130     | 1.9261        | -                      | -                      | -                      | -                     |
| 4.8276  | 140     | 1.9737        | -                      | -                      | -                      | -                     |
| 5.0     | 145     | -             | 0.2117                 | 0.2149                 | 0.2318                 | 0.1946                |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->