|
--- |
|
license: gpl-3.0 |
|
datasets: |
|
- Mxode/IndustryCorpus-Subset-zh-en |
|
--- |
|
|
|
# **Bilingual Tokenizer** |
|
|
|
|
|
A portion of the data from the [IndustryCorpus-Subset-zh-en](https://huggingface.co/datasets/Mxode/IndustryCorpus-Subset-zh-en) dataset was used for training. |
|
|
|
This dataset consists of **Chinese and English bilingual text**. |
|
|
|
10,000 samples were taken from the untrained portion to test the compression rate of the tokenizer. |
|
|
|
Compression rate formula: |
|
|
|
$$ |
|
\text{Compression rate} = \frac{\text{length after tokenization}}{\text{character length of the original corpus}} |
|
$$ |
|
|
|
Here is the test result: |
|
|
|
| Model | Tokenizer Size | Compression Rate | |
|
| :----------------------------------------------------------: | :------------: | :------------: | |
|
| [deepseek-llm-7b-base](https://huggingface.co/deepseek-ai/deepseek-llm-7b-base) | 100015 | 36.63% | |
|
| [deepseek-coder-33b-base](https://huggingface.co/deepseek-ai/deepseek-coder-33b-base) | 32022 | 41.75% | |
|
| [gemma-2-27b](https://huggingface.co/google/gemma-2-27b) | 256000 | 37.75% | |
|
| [glm-4-9b](https://huggingface.co/THUDM/glm-4-9b) | 151343 | 34.26% | |
|
| [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | 92550 | 35.15% | |
|
| [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) | 32000 | 63.33% | |
|
| [Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) | 128256 | 41.48% | |
|
| [Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) | 32768 | 52.43% | |
|
| [Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) | 32011 | 63.29% | |
|
| [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) | 151646 | 35.91% | |
|
| [Yi-1.5-9B](https://huggingface.co/01-ai/Yi-1.5-9B) | 63992 | 36.86% | |
|
| BilingualTokenizer-1K | 1000 | 75.61% | |
|
| BilingualTokenizer-2K | 2000 | 62.26% | |
|
| BilingualTokenizer-4K | 4000 | 52.81% | |
|
| BilingualTokenizer-8K | 8000 | 45.92% | |
|
| BilingualTokenizer-16K | 16000 | 40.94% | |