ViT Bean Leaves
Este modelo es una versión mejorada de google/vit-base-patch16-224-in21k en el conjunto de datos beans. Obtiene los siguientes resultados en el conjunto de evaluación:
Pérdida: 0.0454
Precisión: 0.9925
Descripción del modelo
Al procesar imágenes de hojas, la IA puede realizar análisis y comparaciones con una base de datos de imágenes previamente etiquetadas para identificar patrones y características distintivas asociadas con diferentes enfermedades o daños.
Hiperparámetros de entrenamiento
Durante el entrenamiento se utilizaron los siguientes hiperparámetros:
- learning_rate 0.0002
- tamaño_lote_entrenamiento: 16
- tamaño_lote_evaluación: 8
- semilla: 42
- optimizador: Adam con betas=(0.9,0.999) y epsilon=1e-08
- lr_scheduler_type: lineal
- número de épocas: 5
- entrenamiento_precisión_mezclada: Native AMP
Resultados del entrenamiento
Pérdida de entrenamiento | Epoch | Step | Pérdida de Validación | Precisión |
---|---|---|---|---|
0.0705 | 1.54 | 100 | 0.0562 | 0.9925 |
0.0123 | 3.08 | 200 | 0.0124 | 1.0 |
0.008 | 4.62 | 300 | 0.0099 | 1.0 |
Framework versions
- Transformers 4.10.0.dev0
- Pytorch 1.9.0+cu102
- Conjuntos de datos 1.11.0
- Tokenizadores 0.10.3
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.