oriram's picture
Update README.md
535fe18
|
raw
history blame
1.02 kB
# Spider-TriviaQA: Context Encoder
This is the context encoder of the model fine-tuned on TriviaQA (and initialized from Spider) discussed in our paper [Learning to Retrieve Passages without Supervision](https://arxiv.org/abs/2112.07708).
## Usage
We used weight sharing for the query encoder and passage encoder, so the same model should be applied for both.
**Note**! We format the passages similar to DPR, i.e. the title and the text are separated by a `[SEP]` token, but token
type ids are all 0-s.
An example usage:
```python
from transformers import AutoTokenizer, DPRContextEncoder
tokenizer = AutoTokenizer.from_pretrained("NAACL2022/spider-trivia-ctx-encoder")
model = DPRContextEncoder.from_pretrained("NAACL2022/spider-trivia-ctx-encoder")
title = "Sauron"
context = "Sauron is the title character and main antagonist of J. R. R. Tolkien's \"The Lord of the Rings\"."
input_dict = tokenizer(title, context, return_tensors="pt")
del input_dict["token_type_ids"]
outputs = model(**input_dict)
```