Update README.md
Browse files
README.md
CHANGED
@@ -9,6 +9,11 @@ thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
|
|
9 |
license: mit
|
10 |
pipeline_tag: zero-shot-classification
|
11 |
---
|
|
|
|
|
|
|
|
|
|
|
12 |
We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
|
13 |
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B |
|
14 |
|---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------|
|
@@ -24,4 +29,50 @@ We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
|
|
24 |
#### Notes.
|
25 |
- <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks.
|
26 |
- <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, we recommand using **deepspeed** as it's faster and saves memory.
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
license: mit
|
10 |
pipeline_tag: zero-shot-classification
|
11 |
---
|
12 |
+
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
|
13 |
+
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data.
|
14 |
+
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
|
15 |
+
This is the DeBERTa V2 xxlarge model with 48 layers, 1536 hidden size. The total parameters are 1.5B and it is trained with 160GB raw data.
|
16 |
+
### Fine-tuning on NLU tasks
|
17 |
We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
|
18 |
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B |
|
19 |
|---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------|
|
|
|
29 |
#### Notes.
|
30 |
- <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks.
|
31 |
- <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, we recommand using **deepspeed** as it's faster and saves memory.
|
32 |
+
|
33 |
+
Run with `Deepspeed`,
|
34 |
+
```bash
|
35 |
+
pip install datasets
|
36 |
+
pip install deepspeed
|
37 |
+
# Download the deepspeed config file
|
38 |
+
wget https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/ds_config.json -O ds_config.json
|
39 |
+
export TASK_NAME=mnli
|
40 |
+
output_dir="ds_results"
|
41 |
+
num_gpus=8
|
42 |
+
batch_size=8
|
43 |
+
python -m torch.distributed.launch --nproc_per_node=${num_gpus} \\
|
44 |
+
run_glue.py \\
|
45 |
+
--model_name_or_path microsoft/deberta-v2-xxlarge \\
|
46 |
+
--task_name $TASK_NAME \\
|
47 |
+
--do_train \\
|
48 |
+
--do_eval \\
|
49 |
+
--max_seq_length 256 \\
|
50 |
+
--per_device_train_batch_size ${batch_size} \\
|
51 |
+
--learning_rate 3e-6 \\
|
52 |
+
--num_train_epochs 3 \\
|
53 |
+
--output_dir $output_dir \\
|
54 |
+
--overwrite_output_dir \\
|
55 |
+
--logging_steps 10 \\
|
56 |
+
--logging_dir $output_dir \\
|
57 |
+
--deepspeed ds_config.json
|
58 |
+
```
|
59 |
+
You can also run with `--sharded_ddp`
|
60 |
+
```bash
|
61 |
+
cd transformers/examples/text-classification/
|
62 |
+
export TASK_NAME=mnli
|
63 |
+
python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\
|
64 |
+
--task_name $TASK_NAME --do_train --do_eval --max_seq_length 256 --per_device_train_batch_size 8 \\
|
65 |
+
--learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16
|
66 |
+
```
|
67 |
+
### Citation
|
68 |
+
If you find DeBERTa useful for your work, please cite the following paper:
|
69 |
+
``` latex
|
70 |
+
@inproceedings{
|
71 |
+
he2021deberta,
|
72 |
+
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
|
73 |
+
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
|
74 |
+
booktitle={International Conference on Learning Representations},
|
75 |
+
year={2021},
|
76 |
+
url={https://openreview.net/forum?id=XPZIaotutsD}
|
77 |
+
}
|
78 |
+
```
|