|
--- |
|
license: openrail |
|
inference: |
|
parameters: |
|
temperature: 0.7 |
|
max_length: 24 |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text2text-generation |
|
tags: |
|
- text-generation-inference |
|
widget: |
|
- text: 'generate title: Importance, Dataset, AI' |
|
example_title: Example 1 |
|
- text: 'generate title: Amazon, Product, Business' |
|
example_title: Example 2 |
|
- text: 'generate title: History, Computer, Software' |
|
example_title: Example 3 |
|
--- |
|
|
|
,,,python |
|
def generate_title(keywords): |
|
input_ids = tokenizer(keywords, return_tensors="pt", padding="longest", truncation=True, max_length=32).input_ids.to(device) |
|
outputs = model.generate( |
|
input_ids, |
|
num_beams=3, |
|
num_beam_groups=3, |
|
num_return_sequences=3, |
|
repetition_penalty=7.0, |
|
diversity_penalty=4.0, |
|
no_repeat_ngram_size=3, |
|
temperature=0.9, |
|
max_length=32 |
|
) |
|
return tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
|
|
keywords = 'This repository contains a fine-tuned model for generating high-quality product descriptions.' |
|
generate_title(keywords) |
|
,,, |