Kjøretid

{'train_runtime': 291.2967, 'train_samples_per_second': 51.494, 'train_steps_per_second': 0.189, 'train_loss': 0.6998663252050227, 'epoch': 4.94} Time: 291.30 Samples/second: 51.49

#SBATCH --nodes=1 #SBATCH --ntasks-per-node=1 #SBATCH --gres=gpu:A100m40:1

norbert2_sentiment_norec_en_gpu_500_rader_max_1

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6269
  • Compute Metrics: :
  • Accuracy: 0.682
  • Balanced Accuracy: 0.5048
  • F1 Score: 0.8073
  • Recall: 0.9569
  • Precision: 0.6981

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Compute Metrics Accuracy Balanced Accuracy F1 Score Recall Precision
No log 1.0 2 0.6311 : 0.688 0.4943 0.8152 0.9885 0.6935
No log 2.0 4 0.6316 : 0.674 0.5268 0.7939 0.9023 0.7088
No log 3.0 6 0.6199 : 0.686 0.5002 0.8120 0.9741 0.6961
No log 4.0 8 0.6475 : 0.652 0.5277 0.7717 0.8448 0.7101
0.6559 5.0 10 0.6269 : 0.682 0.5048 0.8073 0.9569 0.6981

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
110
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.