KJøretid

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=3

#SBATCH --gres=gpu:A100m40:1

{'train_runtime': 60.0918, 'train_samples_per_second': 41.603, 'train_steps_per_second': 0.166, 'train_loss': 0.6561894416809082, 'epoch': 5.0}

Time: 60.09

Samples/second: 41.60

norbert2_sentiment_norec_en_gpu_500_rader_max_noder_task

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6280
  • Compute Metrics: :
  • Accuracy: 0.678
  • Balanced Accuracy: 0.4889
  • F1 Score: 0.8076
  • Recall: 0.9713
  • Precision: 0.6912

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Compute Metrics Accuracy Balanced Accuracy F1 Score Recall Precision
No log 1.0 2 0.6324 : 0.696 0.5 0.8208 1.0 0.696
No log 2.0 4 0.6264 : 0.692 0.4971 0.8180 0.9943 0.6948
No log 3.0 6 0.6180 : 0.696 0.5 0.8208 1.0 0.696
No log 4.0 8 0.6236 : 0.694 0.5023 0.8185 0.9914 0.6970
0.6562 5.0 10 0.6280 : 0.678 0.4889 0.8076 0.9713 0.6912

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
112
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.