Kjøretid:

{'train_runtime': 432.2459, 'train_samples_per_second': 5.784, 'train_steps_per_second': 0.012, 'train_loss': 0.6640925884246827, 'epoch': 5.0}

Time: 432.25

Samples/second: 5.78

GPU memory occupied: 11314 MB.

norbert2_sentiment_norec_to_gpu_500_rader_8

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6252
  • Compute Metrics: :
  • Accuracy: 0.692
  • Balanced Accuracy: 0.4971
  • F1 Score: 0.8180
  • Recall: 0.9943
  • Precision: 0.6948

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Compute Metrics Accuracy Balanced Accuracy F1 Score Recall Precision
No log 1.0 1 0.6370 : 0.696 0.5 0.8208 1.0 0.696
No log 2.0 2 0.6319 : 0.684 0.4932 0.8119 0.9799 0.6931
No log 3.0 3 0.6415 : 0.692 0.4971 0.8180 0.9943 0.6948
No log 4.0 4 0.6299 : 0.692 0.4971 0.8180 0.9943 0.6948
No log 5.0 5 0.6252 : 0.692 0.4971 0.8180 0.9943 0.6948

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
114
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.