How To Use

from transformers import BartForConditionalGeneration, BartTokenizer
model = BartForConditionalGeneration.from_pretrained("NTUYG/ComFormer")
tokenizer = BartTokenizer.from_pretrained("NTUYG/ComFormer")
code = '''    
public static void copyFile( File in, File out )  
            throws IOException  
    {  
        FileChannel inChannel = new FileInputStream( in ).getChannel();  
        FileChannel outChannel = new FileOutputStream( out ).getChannel();  
        try
        {  
//          inChannel.transferTo(0, inChannel.size(), outChannel);      // original -- apparently has trouble copying large files on Windows  
 
            // magic number for Windows, 64Mb - 32Kb)  
            int maxCount = (64 * 1024 * 1024) - (32 * 1024);  
            long size = inChannel.size();  
            long position = 0;  
            while ( position < size )  
            {  
               position += inChannel.transferTo( position, maxCount, outChannel );  
            }  
        }  
        finally
        {  
            if ( inChannel != null )  
            {  
               inChannel.close();  
            }  
            if ( outChannel != null )  
            {  
                outChannel.close();  
            }  
        }  
    }
    '''
code_seq, sbt = utils.transformer(code) #can find in https://github.com/NTDXYG/ComFormer
input_text = code_seq + sbt
input_ids = tokenizer.encode(input_text, return_tensors="pt", max_length=256, 		truncation=True)
summary_text_ids = model.generate(
    input_ids=input_ids,
    bos_token_id=model.config.bos_token_id,
    eos_token_id=model.config.eos_token_id,
    length_penalty=2.0,
    max_length=30,
    min_length=2,
    num_beams=5,
)
comment = tokenizer.decode(summary_text_ids[0], skip_special_tokens=True)
print(comment)

BibTeX entry and citation info

@misc{yang2021comformer,
      title={ComFormer: Code Comment Generation via Transformer and Fusion Method-based Hybrid Code Representation}, 
      author={Guang Yang and Xiang Chen and Jinxin Cao and Shuyuan Xu and Zhanqi Cui and Chi Yu and Ke Liu},
      year={2021},
      eprint={2107.03644},
      archivePrefix={arXiv},
      primaryClass={cs.SE}
}
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.