|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import shutil |
|
import sys |
|
import tempfile |
|
|
|
from diffusers import DiffusionPipeline, UNet2DConditionModel |
|
|
|
|
|
sys.path.append("..") |
|
from test_examples_utils import ExamplesTestsAccelerate, run_command |
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
|
|
logger = logging.getLogger() |
|
stream_handler = logging.StreamHandler(sys.stdout) |
|
logger.addHandler(stream_handler) |
|
|
|
|
|
class TextToImage(ExamplesTestsAccelerate): |
|
def test_text_to_image(self): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
test_args = f""" |
|
examples/text_to_image/train_text_to_image.py |
|
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe |
|
--dataset_name hf-internal-testing/dummy_image_text_data |
|
--resolution 64 |
|
--center_crop |
|
--random_flip |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 2 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
""".split() |
|
|
|
run_command(self._launch_args + test_args) |
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors"))) |
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) |
|
|
|
def test_text_to_image_checkpointing(self): |
|
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" |
|
prompt = "a prompt" |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
|
|
|
|
|
|
|
|
initial_run_args = f""" |
|
examples/text_to_image/train_text_to_image.py |
|
--pretrained_model_name_or_path {pretrained_model_name_or_path} |
|
--dataset_name hf-internal-testing/dummy_image_text_data |
|
--resolution 64 |
|
--center_crop |
|
--random_flip |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 4 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
--checkpointing_steps=2 |
|
--seed=0 |
|
""".split() |
|
|
|
run_command(self._launch_args + initial_run_args) |
|
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) |
|
pipe(prompt, num_inference_steps=1) |
|
|
|
|
|
self.assertEqual( |
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, |
|
{"checkpoint-2", "checkpoint-4"}, |
|
) |
|
|
|
|
|
unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet") |
|
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None) |
|
pipe(prompt, num_inference_steps=1) |
|
|
|
|
|
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) |
|
|
|
|
|
|
|
resume_run_args = f""" |
|
examples/text_to_image/train_text_to_image.py |
|
--pretrained_model_name_or_path {pretrained_model_name_or_path} |
|
--dataset_name hf-internal-testing/dummy_image_text_data |
|
--resolution 64 |
|
--center_crop |
|
--random_flip |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 2 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
--checkpointing_steps=1 |
|
--resume_from_checkpoint=checkpoint-4 |
|
--seed=0 |
|
""".split() |
|
|
|
run_command(self._launch_args + resume_run_args) |
|
|
|
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) |
|
pipe(prompt, num_inference_steps=1) |
|
|
|
|
|
|
|
self.assertEqual( |
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, |
|
{"checkpoint-4", "checkpoint-5"}, |
|
) |
|
|
|
def test_text_to_image_checkpointing_use_ema(self): |
|
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" |
|
prompt = "a prompt" |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
|
|
|
|
|
|
|
|
initial_run_args = f""" |
|
examples/text_to_image/train_text_to_image.py |
|
--pretrained_model_name_or_path {pretrained_model_name_or_path} |
|
--dataset_name hf-internal-testing/dummy_image_text_data |
|
--resolution 64 |
|
--center_crop |
|
--random_flip |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 4 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
--checkpointing_steps=2 |
|
--use_ema |
|
--seed=0 |
|
""".split() |
|
|
|
run_command(self._launch_args + initial_run_args) |
|
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) |
|
pipe(prompt, num_inference_steps=2) |
|
|
|
|
|
self.assertEqual( |
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, |
|
{"checkpoint-2", "checkpoint-4"}, |
|
) |
|
|
|
|
|
unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet") |
|
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None) |
|
pipe(prompt, num_inference_steps=1) |
|
|
|
|
|
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) |
|
|
|
|
|
|
|
resume_run_args = f""" |
|
examples/text_to_image/train_text_to_image.py |
|
--pretrained_model_name_or_path {pretrained_model_name_or_path} |
|
--dataset_name hf-internal-testing/dummy_image_text_data |
|
--resolution 64 |
|
--center_crop |
|
--random_flip |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 2 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
--checkpointing_steps=1 |
|
--resume_from_checkpoint=checkpoint-4 |
|
--use_ema |
|
--seed=0 |
|
""".split() |
|
|
|
run_command(self._launch_args + resume_run_args) |
|
|
|
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) |
|
pipe(prompt, num_inference_steps=1) |
|
|
|
|
|
|
|
self.assertEqual( |
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, |
|
{"checkpoint-4", "checkpoint-5"}, |
|
) |
|
|
|
def test_text_to_image_checkpointing_checkpoints_total_limit(self): |
|
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" |
|
prompt = "a prompt" |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
|
|
|
|
|
|
|
|
|
|
initial_run_args = f""" |
|
examples/text_to_image/train_text_to_image.py |
|
--pretrained_model_name_or_path {pretrained_model_name_or_path} |
|
--dataset_name hf-internal-testing/dummy_image_text_data |
|
--resolution 64 |
|
--center_crop |
|
--random_flip |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 6 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
--checkpointing_steps=2 |
|
--checkpoints_total_limit=2 |
|
--seed=0 |
|
""".split() |
|
|
|
run_command(self._launch_args + initial_run_args) |
|
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) |
|
pipe(prompt, num_inference_steps=1) |
|
|
|
|
|
|
|
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"}) |
|
|
|
def test_text_to_image_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): |
|
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" |
|
prompt = "a prompt" |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
|
|
|
|
|
|
|
|
initial_run_args = f""" |
|
examples/text_to_image/train_text_to_image.py |
|
--pretrained_model_name_or_path {pretrained_model_name_or_path} |
|
--dataset_name hf-internal-testing/dummy_image_text_data |
|
--resolution 64 |
|
--center_crop |
|
--random_flip |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 4 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
--checkpointing_steps=2 |
|
--seed=0 |
|
""".split() |
|
|
|
run_command(self._launch_args + initial_run_args) |
|
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) |
|
pipe(prompt, num_inference_steps=1) |
|
|
|
|
|
self.assertEqual( |
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, |
|
{"checkpoint-2", "checkpoint-4"}, |
|
) |
|
|
|
|
|
|
|
|
|
resume_run_args = f""" |
|
examples/text_to_image/train_text_to_image.py |
|
--pretrained_model_name_or_path {pretrained_model_name_or_path} |
|
--dataset_name hf-internal-testing/dummy_image_text_data |
|
--resolution 64 |
|
--center_crop |
|
--random_flip |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 8 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
--checkpointing_steps=2 |
|
--resume_from_checkpoint=checkpoint-4 |
|
--checkpoints_total_limit=2 |
|
--seed=0 |
|
""".split() |
|
|
|
run_command(self._launch_args + resume_run_args) |
|
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) |
|
pipe(prompt, num_inference_steps=1) |
|
|
|
|
|
self.assertEqual( |
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, |
|
{"checkpoint-6", "checkpoint-8"}, |
|
) |
|
|
|
|
|
class TextToImageSDXL(ExamplesTestsAccelerate): |
|
def test_text_to_image_sdxl(self): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
test_args = f""" |
|
examples/text_to_image/train_text_to_image_sdxl.py |
|
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe |
|
--dataset_name hf-internal-testing/dummy_image_text_data |
|
--resolution 64 |
|
--center_crop |
|
--random_flip |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 2 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
""".split() |
|
|
|
run_command(self._launch_args + test_args) |
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors"))) |
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) |
|
|