|
|
|
import argparse |
|
import json |
|
import os |
|
from contextlib import nullcontext |
|
|
|
import torch |
|
from safetensors.torch import load_file |
|
from transformers import ( |
|
AutoTokenizer, |
|
T5EncoderModel, |
|
) |
|
|
|
from diffusers import ( |
|
AutoencoderOobleck, |
|
CosineDPMSolverMultistepScheduler, |
|
StableAudioDiTModel, |
|
StableAudioPipeline, |
|
StableAudioProjectionModel, |
|
) |
|
from diffusers.models.modeling_utils import load_model_dict_into_meta |
|
from diffusers.utils import is_accelerate_available |
|
|
|
|
|
if is_accelerate_available(): |
|
from accelerate import init_empty_weights |
|
|
|
|
|
def convert_stable_audio_state_dict_to_diffusers(state_dict, num_autoencoder_layers=5): |
|
projection_model_state_dict = { |
|
k.replace("conditioner.conditioners.", "").replace("embedder.embedding", "time_positional_embedding"): v |
|
for (k, v) in state_dict.items() |
|
if "conditioner.conditioners" in k |
|
} |
|
|
|
|
|
for key, value in list(projection_model_state_dict.items()): |
|
new_key = key.replace("seconds_start", "start_number_conditioner").replace( |
|
"seconds_total", "end_number_conditioner" |
|
) |
|
projection_model_state_dict[new_key] = projection_model_state_dict.pop(key) |
|
|
|
model_state_dict = {k.replace("model.model.", ""): v for (k, v) in state_dict.items() if "model.model." in k} |
|
for key, value in list(model_state_dict.items()): |
|
|
|
new_key = ( |
|
key.replace("transformer.", "") |
|
.replace("layers", "transformer_blocks") |
|
.replace("self_attn", "attn1") |
|
.replace("cross_attn", "attn2") |
|
.replace("ff.ff", "ff.net") |
|
) |
|
new_key = ( |
|
new_key.replace("pre_norm", "norm1") |
|
.replace("cross_attend_norm", "norm2") |
|
.replace("ff_norm", "norm3") |
|
.replace("to_out", "to_out.0") |
|
) |
|
new_key = new_key.replace("gamma", "weight").replace("beta", "bias") |
|
|
|
|
|
new_key = ( |
|
new_key.replace("project", "proj") |
|
.replace("to_timestep_embed", "timestep_proj") |
|
.replace("timestep_features", "time_proj") |
|
.replace("to_global_embed", "global_proj") |
|
.replace("to_cond_embed", "cross_attention_proj") |
|
) |
|
|
|
|
|
if new_key == "time_proj.weight": |
|
model_state_dict[key] = model_state_dict[key].squeeze(1) |
|
|
|
if "to_qkv" in new_key: |
|
q, k, v = torch.chunk(model_state_dict.pop(key), 3, dim=0) |
|
model_state_dict[new_key.replace("qkv", "q")] = q |
|
model_state_dict[new_key.replace("qkv", "k")] = k |
|
model_state_dict[new_key.replace("qkv", "v")] = v |
|
elif "to_kv" in new_key: |
|
k, v = torch.chunk(model_state_dict.pop(key), 2, dim=0) |
|
model_state_dict[new_key.replace("kv", "k")] = k |
|
model_state_dict[new_key.replace("kv", "v")] = v |
|
else: |
|
model_state_dict[new_key] = model_state_dict.pop(key) |
|
|
|
autoencoder_state_dict = { |
|
k.replace("pretransform.model.", "").replace("coder.layers.0", "coder.conv1"): v |
|
for (k, v) in state_dict.items() |
|
if "pretransform.model." in k |
|
} |
|
|
|
for key, _ in list(autoencoder_state_dict.items()): |
|
new_key = key |
|
if "coder.layers" in new_key: |
|
|
|
idx = int(new_key.split("coder.layers.")[1].split(".")[0]) |
|
|
|
new_key = new_key.replace(f"coder.layers.{idx}", f"coder.block.{idx-1}") |
|
|
|
if "encoder" in new_key: |
|
for i in range(3): |
|
new_key = new_key.replace(f"block.{idx-1}.layers.{i}", f"block.{idx-1}.res_unit{i+1}") |
|
new_key = new_key.replace(f"block.{idx-1}.layers.3", f"block.{idx-1}.snake1") |
|
new_key = new_key.replace(f"block.{idx-1}.layers.4", f"block.{idx-1}.conv1") |
|
else: |
|
for i in range(2, 5): |
|
new_key = new_key.replace(f"block.{idx-1}.layers.{i}", f"block.{idx-1}.res_unit{i-1}") |
|
new_key = new_key.replace(f"block.{idx-1}.layers.0", f"block.{idx-1}.snake1") |
|
new_key = new_key.replace(f"block.{idx-1}.layers.1", f"block.{idx-1}.conv_t1") |
|
|
|
new_key = new_key.replace("layers.0.beta", "snake1.beta") |
|
new_key = new_key.replace("layers.0.alpha", "snake1.alpha") |
|
new_key = new_key.replace("layers.2.beta", "snake2.beta") |
|
new_key = new_key.replace("layers.2.alpha", "snake2.alpha") |
|
new_key = new_key.replace("layers.1.bias", "conv1.bias") |
|
new_key = new_key.replace("layers.1.weight_", "conv1.weight_") |
|
new_key = new_key.replace("layers.3.bias", "conv2.bias") |
|
new_key = new_key.replace("layers.3.weight_", "conv2.weight_") |
|
|
|
if idx == num_autoencoder_layers + 1: |
|
new_key = new_key.replace(f"block.{idx-1}", "snake1") |
|
elif idx == num_autoencoder_layers + 2: |
|
new_key = new_key.replace(f"block.{idx-1}", "conv2") |
|
|
|
else: |
|
new_key = new_key |
|
|
|
value = autoencoder_state_dict.pop(key) |
|
if "snake" in new_key: |
|
value = value.unsqueeze(0).unsqueeze(-1) |
|
if new_key in autoencoder_state_dict: |
|
raise ValueError(f"{new_key} already in state dict.") |
|
autoencoder_state_dict[new_key] = value |
|
|
|
return model_state_dict, projection_model_state_dict, autoencoder_state_dict |
|
|
|
|
|
parser = argparse.ArgumentParser(description="Convert Stable Audio 1.0 model weights to a diffusers pipeline") |
|
parser.add_argument("--model_folder_path", type=str, help="Location of Stable Audio weights and config") |
|
parser.add_argument("--use_safetensors", action="store_true", help="Use SafeTensors for conversion") |
|
parser.add_argument( |
|
"--save_directory", |
|
type=str, |
|
default="./tmp/stable-audio-1.0", |
|
help="Directory to save a pipeline to. Will be created if it doesn't exist.", |
|
) |
|
parser.add_argument( |
|
"--repo_id", |
|
type=str, |
|
default="stable-audio-1.0", |
|
help="Hub organization to save the pipelines to", |
|
) |
|
parser.add_argument("--push_to_hub", action="store_true", help="Push to hub") |
|
parser.add_argument("--variant", type=str, help="Set to bf16 to save bfloat16 weights") |
|
|
|
args = parser.parse_args() |
|
|
|
checkpoint_path = ( |
|
os.path.join(args.model_folder_path, "model.safetensors") |
|
if args.use_safetensors |
|
else os.path.join(args.model_folder_path, "model.ckpt") |
|
) |
|
config_path = os.path.join(args.model_folder_path, "model_config.json") |
|
|
|
device = "cpu" |
|
if args.variant == "bf16": |
|
dtype = torch.bfloat16 |
|
else: |
|
dtype = torch.float32 |
|
|
|
with open(config_path) as f_in: |
|
config_dict = json.load(f_in) |
|
|
|
conditioning_dict = { |
|
conditioning["id"]: conditioning["config"] for conditioning in config_dict["model"]["conditioning"]["configs"] |
|
} |
|
|
|
t5_model_config = conditioning_dict["prompt"] |
|
|
|
|
|
text_encoder = T5EncoderModel.from_pretrained(t5_model_config["t5_model_name"]) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
t5_model_config["t5_model_name"], truncation=True, model_max_length=t5_model_config["max_length"] |
|
) |
|
|
|
|
|
|
|
scheduler = CosineDPMSolverMultistepScheduler( |
|
sigma_min=0.3, |
|
sigma_max=500, |
|
solver_order=2, |
|
prediction_type="v_prediction", |
|
sigma_data=1.0, |
|
sigma_schedule="exponential", |
|
) |
|
ctx = init_empty_weights if is_accelerate_available() else nullcontext |
|
|
|
|
|
if args.use_safetensors: |
|
orig_state_dict = load_file(checkpoint_path, device=device) |
|
else: |
|
orig_state_dict = torch.load(checkpoint_path, map_location=device) |
|
|
|
|
|
model_config = config_dict["model"]["diffusion"]["config"] |
|
|
|
model_state_dict, projection_model_state_dict, autoencoder_state_dict = convert_stable_audio_state_dict_to_diffusers( |
|
orig_state_dict |
|
) |
|
|
|
|
|
with ctx(): |
|
projection_model = StableAudioProjectionModel( |
|
text_encoder_dim=text_encoder.config.d_model, |
|
conditioning_dim=config_dict["model"]["conditioning"]["cond_dim"], |
|
min_value=conditioning_dict["seconds_start"][ |
|
"min_val" |
|
], |
|
max_value=conditioning_dict["seconds_start"][ |
|
"max_val" |
|
], |
|
) |
|
if is_accelerate_available(): |
|
load_model_dict_into_meta(projection_model, projection_model_state_dict) |
|
else: |
|
projection_model.load_state_dict(projection_model_state_dict) |
|
|
|
attention_head_dim = model_config["embed_dim"] // model_config["num_heads"] |
|
with ctx(): |
|
model = StableAudioDiTModel( |
|
sample_size=int(config_dict["sample_size"]) |
|
/ int(config_dict["model"]["pretransform"]["config"]["downsampling_ratio"]), |
|
in_channels=model_config["io_channels"], |
|
num_layers=model_config["depth"], |
|
attention_head_dim=attention_head_dim, |
|
num_key_value_attention_heads=model_config["cond_token_dim"] // attention_head_dim, |
|
num_attention_heads=model_config["num_heads"], |
|
out_channels=model_config["io_channels"], |
|
cross_attention_dim=model_config["cond_token_dim"], |
|
time_proj_dim=256, |
|
global_states_input_dim=model_config["global_cond_dim"], |
|
cross_attention_input_dim=model_config["cond_token_dim"], |
|
) |
|
if is_accelerate_available(): |
|
load_model_dict_into_meta(model, model_state_dict) |
|
else: |
|
model.load_state_dict(model_state_dict) |
|
|
|
|
|
autoencoder_config = config_dict["model"]["pretransform"]["config"] |
|
with ctx(): |
|
autoencoder = AutoencoderOobleck( |
|
encoder_hidden_size=autoencoder_config["encoder"]["config"]["channels"], |
|
downsampling_ratios=autoencoder_config["encoder"]["config"]["strides"], |
|
decoder_channels=autoencoder_config["decoder"]["config"]["channels"], |
|
decoder_input_channels=autoencoder_config["decoder"]["config"]["latent_dim"], |
|
audio_channels=autoencoder_config["io_channels"], |
|
channel_multiples=autoencoder_config["encoder"]["config"]["c_mults"], |
|
sampling_rate=config_dict["sample_rate"], |
|
) |
|
|
|
if is_accelerate_available(): |
|
load_model_dict_into_meta(autoencoder, autoencoder_state_dict) |
|
else: |
|
autoencoder.load_state_dict(autoencoder_state_dict) |
|
|
|
|
|
|
|
pipeline = StableAudioPipeline( |
|
transformer=model, |
|
tokenizer=tokenizer, |
|
text_encoder=text_encoder, |
|
scheduler=scheduler, |
|
vae=autoencoder, |
|
projection_model=projection_model, |
|
) |
|
pipeline.to(dtype).save_pretrained( |
|
args.save_directory, repo_id=args.repo_id, push_to_hub=args.push_to_hub, variant=args.variant |
|
) |
|
|