|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import inspect |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import AutoTokenizer, T5EncoderModel |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
LattePipeline, |
|
LatteTransformer3DModel, |
|
) |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
numpy_cosine_similarity_distance, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
from ..test_pipelines_common import PipelineTesterMixin, to_np |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class LattePipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = LattePipeline |
|
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
|
|
required_optional_params = PipelineTesterMixin.required_optional_params |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
transformer = LatteTransformer3DModel( |
|
sample_size=8, |
|
num_layers=1, |
|
patch_size=2, |
|
attention_head_dim=8, |
|
num_attention_heads=3, |
|
caption_channels=32, |
|
in_channels=4, |
|
cross_attention_dim=24, |
|
out_channels=8, |
|
attention_bias=True, |
|
activation_fn="gelu-approximate", |
|
num_embeds_ada_norm=1000, |
|
norm_type="ada_norm_single", |
|
norm_elementwise_affine=False, |
|
norm_eps=1e-6, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL() |
|
|
|
scheduler = DDIMScheduler() |
|
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
components = { |
|
"transformer": transformer.eval(), |
|
"vae": vae.eval(), |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder.eval(), |
|
"tokenizer": tokenizer, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"negative_prompt": "low quality", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 5.0, |
|
"height": 8, |
|
"width": 8, |
|
"video_length": 1, |
|
"output_type": "pt", |
|
"clean_caption": False, |
|
} |
|
return inputs |
|
|
|
def test_inference(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
video = pipe(**inputs).frames |
|
generated_video = video[0] |
|
|
|
self.assertEqual(generated_video.shape, (1, 3, 8, 8)) |
|
expected_video = torch.randn(1, 3, 8, 8) |
|
max_diff = np.abs(generated_video - expected_video).max() |
|
self.assertLessEqual(max_diff, 1e10) |
|
|
|
def test_callback_inputs(self): |
|
sig = inspect.signature(self.pipeline_class.__call__) |
|
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters |
|
has_callback_step_end = "callback_on_step_end" in sig.parameters |
|
|
|
if not (has_callback_tensor_inputs and has_callback_step_end): |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
self.assertTrue( |
|
hasattr(pipe, "_callback_tensor_inputs"), |
|
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", |
|
) |
|
|
|
def callback_inputs_subset(pipe, i, t, callback_kwargs): |
|
|
|
for tensor_name, tensor_value in callback_kwargs.items(): |
|
|
|
assert tensor_name in pipe._callback_tensor_inputs |
|
|
|
return callback_kwargs |
|
|
|
def callback_inputs_all(pipe, i, t, callback_kwargs): |
|
for tensor_name in pipe._callback_tensor_inputs: |
|
assert tensor_name in callback_kwargs |
|
|
|
|
|
for tensor_name, tensor_value in callback_kwargs.items(): |
|
|
|
assert tensor_name in pipe._callback_tensor_inputs |
|
|
|
return callback_kwargs |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
|
|
inputs["callback_on_step_end"] = callback_inputs_subset |
|
inputs["callback_on_step_end_tensor_inputs"] = ["latents"] |
|
output = pipe(**inputs)[0] |
|
|
|
|
|
inputs["callback_on_step_end"] = callback_inputs_all |
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs |
|
output = pipe(**inputs)[0] |
|
|
|
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs): |
|
is_last = i == (pipe.num_timesteps - 1) |
|
if is_last: |
|
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) |
|
return callback_kwargs |
|
|
|
inputs["callback_on_step_end"] = callback_inputs_change_tensor |
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs |
|
output = pipe(**inputs)[0] |
|
assert output.abs().sum() < 1e10 |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-3) |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
pass |
|
|
|
def test_save_load_optional_components(self): |
|
if not hasattr(self.pipeline_class, "_optional_components"): |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
|
|
for component in pipe.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
prompt = inputs["prompt"] |
|
generator = inputs["generator"] |
|
|
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
) = pipe.encode_prompt(prompt) |
|
|
|
|
|
inputs = { |
|
"prompt_embeds": prompt_embeds, |
|
"negative_prompt": None, |
|
"negative_prompt_embeds": negative_prompt_embeds, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 5.0, |
|
"height": 8, |
|
"width": 8, |
|
"video_length": 1, |
|
"mask_feature": False, |
|
"output_type": "pt", |
|
"clean_caption": False, |
|
} |
|
|
|
|
|
for optional_component in pipe._optional_components: |
|
setattr(pipe, optional_component, None) |
|
|
|
output = pipe(**inputs)[0] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
pipe.save_pretrained(tmpdir, safe_serialization=False) |
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) |
|
pipe_loaded.to(torch_device) |
|
|
|
for component in pipe_loaded.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
|
|
pipe_loaded.set_progress_bar_config(disable=None) |
|
|
|
for optional_component in pipe._optional_components: |
|
self.assertTrue( |
|
getattr(pipe_loaded, optional_component) is None, |
|
f"`{optional_component}` did not stay set to None after loading.", |
|
) |
|
|
|
output_loaded = pipe_loaded(**inputs)[0] |
|
|
|
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() |
|
self.assertLess(max_diff, 1.0) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
super()._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class LattePipelineIntegrationTests(unittest.TestCase): |
|
prompt = "A painting of a squirrel eating a burger." |
|
|
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_latte(self): |
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
pipe = LattePipeline.from_pretrained("maxin-cn/Latte-1", torch_dtype=torch.float16) |
|
pipe.enable_model_cpu_offload() |
|
prompt = self.prompt |
|
|
|
videos = pipe( |
|
prompt=prompt, |
|
height=512, |
|
width=512, |
|
generator=generator, |
|
num_inference_steps=2, |
|
clean_caption=False, |
|
).frames |
|
|
|
video = videos[0] |
|
expected_video = torch.randn(1, 512, 512, 3).numpy() |
|
|
|
max_diff = numpy_cosine_similarity_distance(video.flatten(), expected_video) |
|
assert max_diff < 1e-3, f"Max diff is too high. got {video.flatten()}" |
|
|