NaeemCSECUET18's picture
End of training
5dad409 verified
|
raw
history blame
2.76 kB
metadata
license: mit
base_model: sagorsarker/bangla-bert-base
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: bangla-bert-base-MLTC-BB2
    results: []

bangla-bert-base-MLTC-BB2

This model is a fine-tuned version of sagorsarker/bangla-bert-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4005
  • F1: 0.8514
  • F1 Weighted: 0.8504
  • Roc Auc: 0.8470
  • Accuracy: 0.5424
  • Hamming Loss: 0.1530
  • Jaccard Score: 0.7413
  • Zero One Loss: 0.4576

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1 F1 Weighted Roc Auc Accuracy Hamming Loss Jaccard Score Zero One Loss
0.4015 1.0 73 0.4027 0.8246 0.8201 0.8206 0.5039 0.1793 0.7016 0.4961
0.3579 2.0 146 0.3583 0.8541 0.8548 0.8522 0.5553 0.1478 0.7453 0.4447
0.2831 3.0 219 0.3768 0.8429 0.8402 0.8360 0.5398 0.1639 0.7284 0.4602
0.1799 4.0 292 0.3565 0.8534 0.8534 0.8489 0.5604 0.1510 0.7443 0.4396
0.1671 5.0 365 0.3724 0.8552 0.8547 0.8508 0.5681 0.1491 0.7470 0.4319
0.1451 6.0 438 0.3773 0.8493 0.8484 0.8477 0.5450 0.1523 0.7381 0.4550
0.0899 7.0 511 0.3986 0.8502 0.8494 0.8457 0.5398 0.1542 0.7394 0.4602
0.0744 8.0 584 0.4005 0.8514 0.8504 0.8470 0.5424 0.1530 0.7413 0.4576

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1