Edit model card

bert-base-multilingual-uncased-MLTC-rob

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3796
  • F1: 0.8594
  • F1 Weighted: 0.8595
  • Roc Auc: 0.8540
  • Accuracy: 0.5784
  • Hamming Loss: 0.1459
  • Jaccard Score: 0.7535
  • Zero One Loss: 0.4216

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1 F1 Weighted Roc Auc Accuracy Hamming Loss Jaccard Score Zero One Loss
0.4034 1.0 146 0.3955 0.8282 0.8293 0.8291 0.5270 0.1710 0.7067 0.4730
0.4045 2.0 292 0.3662 0.8387 0.8397 0.8426 0.5578 0.1575 0.7222 0.4422
0.2843 3.0 438 0.3796 0.8594 0.8595 0.8540 0.5784 0.1459 0.7535 0.4216
0.209 4.0 584 0.3766 0.8446 0.8383 0.8425 0.5450 0.1575 0.7311 0.4550
0.2469 5.0 730 0.3608 0.8568 0.8548 0.8541 0.5784 0.1459 0.7494 0.4216
0.2266 6.0 876 0.3702 0.8462 0.8428 0.8451 0.5630 0.1549 0.7334 0.4370
0.1273 7.0 1022 0.3739 0.8561 0.8539 0.8547 0.5835 0.1452 0.7483 0.4165
0.1376 8.0 1168 0.3910 0.8568 0.8549 0.8567 0.5861 0.1433 0.7494 0.4139
0.1073 9.0 1314 0.3973 0.8566 0.8550 0.8567 0.5784 0.1433 0.7492 0.4216
0.0752 10.0 1460 0.4025 0.8542 0.8525 0.8541 0.5707 0.1459 0.7455 0.4293

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
12
Safetensors
Model size
167M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for NaeemCSECUET18/bert-base-multilingual-uncased-MLTC-rob

Finetuned
(392)
this model