Edit model card

Intent-classification-BERT-Large-Ashuv3

This model is a fine-tuned version of google-bert/bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2610
  • Accuracy: 0.8951
  • F1: 0.8807
  • Precision: 0.8812
  • Recall: 0.8820

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.6762 0.24 10 1.3120 0.5280 0.4993 0.6178 0.5370
0.9717 0.49 20 0.7487 0.8571 0.8402 0.8670 0.8455
0.6375 0.73 30 0.4393 0.8509 0.8479 0.8862 0.8548
0.4006 0.98 40 0.2427 0.9068 0.9005 0.9228 0.9075
0.2291 1.22 50 0.1875 0.9068 0.8940 0.9106 0.8902
0.2634 1.46 60 0.2204 0.9068 0.8977 0.9135 0.9051
0.1916 1.71 70 0.1730 0.9130 0.9053 0.9232 0.9123
0.1881 1.95 80 0.1676 0.9130 0.9051 0.9232 0.9133
0.2692 2.2 90 0.1728 0.9068 0.8958 0.9423 0.8790
0.1425 2.44 100 0.1757 0.9068 0.8958 0.9423 0.8790
0.2674 2.68 110 0.3307 0.8758 0.8608 0.8756 0.8713
0.2385 2.93 120 0.1878 0.9006 0.8901 0.9059 0.8988
0.1868 3.17 130 0.1679 0.9130 0.9027 0.9147 0.9097
0.2281 3.41 140 0.1796 0.9130 0.9057 0.9274 0.9133
0.1459 3.66 150 0.1982 0.9068 0.8960 0.9077 0.9049
0.161 3.9 160 0.2266 0.8944 0.8772 0.9012 0.8765
0.1441 4.15 170 0.2062 0.8944 0.8889 0.9115 0.8935
0.172 4.39 180 0.2208 0.9006 0.8922 0.9216 0.8988
0.1365 4.63 190 0.2088 0.9068 0.8974 0.9244 0.9045
0.1795 4.88 200 0.2011 0.8820 0.8682 0.8936 0.8569
0.204 5.12 210 0.2377 0.8820 0.8642 0.8656 0.8721
0.1409 5.37 220 0.2178 0.8944 0.8852 0.9003 0.8776
0.1771 5.61 230 0.2284 0.8758 0.8624 0.8871 0.8511
0.1926 5.85 240 0.2211 0.8944 0.8815 0.8990 0.8761
0.2142 6.1 250 0.2217 0.9193 0.9082 0.9306 0.9130
0.1125 6.34 260 0.2321 0.9006 0.8889 0.9420 0.8702
0.1473 6.59 270 0.2129 0.9130 0.9057 0.9274 0.9133
0.1468 6.83 280 0.2318 0.9130 0.9057 0.9274 0.9133
0.1951 7.07 290 0.1957 0.9006 0.8879 0.9061 0.8788
0.1659 7.32 300 0.1961 0.9006 0.8872 0.9143 0.8752
0.1265 7.56 310 0.2058 0.9130 0.9049 0.9226 0.9097
0.1774 7.8 320 0.2223 0.9068 0.8974 0.9244 0.9045
0.2609 8.05 330 0.2218 0.8944 0.8833 0.8906 0.8811
0.1079 8.29 340 0.3312 0.8820 0.8675 0.8672 0.8680
0.1729 8.54 350 0.3627 0.8696 0.8500 0.8540 0.8554
0.2337 8.78 360 0.2526 0.9006 0.8872 0.9143 0.8752
0.1573 9.02 370 0.2072 0.9130 0.9049 0.9226 0.9097
0.1843 9.27 380 0.2605 0.9068 0.8991 0.9210 0.9085
0.1521 9.51 390 0.2695 0.9006 0.8920 0.9081 0.8966
0.193 9.76 400 0.3340 0.9130 0.9039 0.9187 0.9061
0.1034 10.0 410 0.3391 0.9068 0.8948 0.9025 0.9049
0.1348 10.24 420 0.3377 0.9006 0.8902 0.8998 0.8930
0.0856 10.49 430 0.3274 0.8882 0.8768 0.8920 0.8692
0.1877 10.73 440 0.3401 0.8696 0.8498 0.8504 0.8514
0.1775 10.98 450 0.4162 0.8882 0.8708 0.8716 0.8799
0.1357 11.22 460 0.3992 0.8820 0.8652 0.8622 0.8716
0.0878 11.46 470 0.3920 0.8944 0.8803 0.8772 0.8883
0.1892 11.71 480 0.3148 0.8696 0.8499 0.8472 0.8549
0.1712 11.95 490 0.3028 0.8758 0.8589 0.8585 0.8597
0.0914 12.2 500 0.3450 0.8820 0.8688 0.8705 0.8680
0.1793 12.44 510 0.3617 0.8882 0.8758 0.8872 0.8692
0.1355 12.68 520 0.4130 0.8820 0.8688 0.8705 0.8680
0.1518 12.93 530 0.5015 0.8944 0.8798 0.8808 0.8878
0.1778 13.17 540 0.3596 0.8882 0.8716 0.8709 0.8804
0.1662 13.41 550 0.3716 0.9006 0.8864 0.8868 0.8930
0.1105 13.66 560 0.3452 0.9006 0.8874 0.8903 0.8966
0.1369 13.9 570 0.3606 0.8944 0.8807 0.8824 0.8883
0.2051 14.15 580 0.3497 0.8882 0.8750 0.8784 0.8728
0.1441 14.39 590 0.4031 0.8820 0.8664 0.8649 0.8680
0.1586 14.63 600 0.3853 0.8820 0.8664 0.8649 0.8680
0.0974 14.88 610 0.4037 0.8820 0.8664 0.8649 0.8680
0.0799 15.12 620 0.5252 0.8820 0.8688 0.8705 0.8680
0.0969 15.37 630 0.5702 0.8820 0.8691 0.8699 0.8716
0.1664 15.61 640 0.5281 0.8820 0.8688 0.8705 0.8680
0.175 15.85 650 0.4865 0.8820 0.8688 0.8705 0.8680
0.1904 16.1 660 0.3893 0.8696 0.8528 0.8520 0.8549
0.1054 16.34 670 0.4320 0.8758 0.8612 0.8636 0.8597
0.1657 16.59 680 0.5669 0.8820 0.8688 0.8705 0.8680
0.1089 16.83 690 0.5642 0.8820 0.8677 0.8649 0.8716
0.0831 17.07 700 0.4782 0.8820 0.8709 0.8744 0.8716
0.1518 17.32 710 0.5122 0.8820 0.8695 0.8720 0.8680
0.1203 17.56 720 0.5720 0.8820 0.8695 0.8720 0.8680
0.1185 17.8 730 0.5798 0.8820 0.8698 0.8703 0.8716
0.1065 18.05 740 0.5495 0.8820 0.8685 0.8701 0.8716
0.13 18.29 750 0.6271 0.8820 0.8687 0.8696 0.8716
0.1382 18.54 760 0.6307 0.8758 0.8585 0.8556 0.8633
0.0979 18.78 770 0.6167 0.8758 0.8585 0.8556 0.8633
0.1328 19.02 780 0.6011 0.8758 0.8585 0.8556 0.8633
0.1561 19.27 790 0.5938 0.8696 0.8517 0.8495 0.8549
0.1638 19.51 800 0.6397 0.8696 0.8528 0.8520 0.8549
0.1358 19.76 810 0.6917 0.8758 0.8614 0.8649 0.8597
0.1298 20.0 820 0.6769 0.8696 0.8528 0.8489 0.8585
0.1102 20.24 830 0.6891 0.8758 0.8610 0.8594 0.8669
0.127 20.49 840 0.6950 0.8820 0.8685 0.8701 0.8716
0.1719 20.73 850 0.6719 0.8882 0.8754 0.8773 0.8799
0.1503 20.98 860 0.6462 0.8820 0.8675 0.8666 0.8716
0.1118 21.22 870 0.6405 0.8820 0.8690 0.8705 0.8680
0.0991 21.46 880 0.6492 0.8758 0.8614 0.8600 0.8633
0.1288 21.71 890 0.7045 0.8820 0.8688 0.8705 0.8680
0.1414 21.95 900 0.7439 0.8820 0.8688 0.8705 0.8680
0.1744 22.2 910 0.7353 0.8820 0.8688 0.8705 0.8680
0.1072 22.44 920 0.7524 0.8820 0.8688 0.8705 0.8680
0.0931 22.68 930 0.7671 0.8758 0.8614 0.8649 0.8597
0.0775 22.93 940 0.7442 0.8758 0.8614 0.8649 0.8597
0.0713 23.17 950 0.7456 0.8758 0.8614 0.8649 0.8597
0.1027 23.41 960 0.7528 0.8820 0.8664 0.8649 0.8680
0.1163 23.66 970 0.7503 0.8820 0.8664 0.8649 0.8680
0.1067 23.9 980 0.7359 0.8758 0.8622 0.8660 0.8597
0.0955 24.15 990 0.7457 0.8820 0.8676 0.8687 0.8680
0.0874 24.39 1000 0.7663 0.8820 0.8685 0.8701 0.8716
0.0865 24.63 1010 0.7761 0.8820 0.8685 0.8701 0.8716
0.1378 24.88 1020 0.7761 0.8820 0.8691 0.8699 0.8716
0.1411 25.12 1030 0.7714 0.8820 0.8676 0.8687 0.8680
0.1034 25.37 1040 0.7662 0.8820 0.8685 0.8700 0.8680
0.0709 25.61 1050 0.7720 0.8820 0.8670 0.8681 0.8680
0.1286 25.85 1060 0.7809 0.8820 0.8670 0.8681 0.8680
0.1191 26.1 1070 0.7861 0.8820 0.8676 0.8687 0.8680
0.0902 26.34 1080 0.7888 0.8820 0.8691 0.8699 0.8716
0.1054 26.59 1090 0.7894 0.8820 0.8698 0.8703 0.8716
0.1142 26.83 1100 0.7914 0.8820 0.8691 0.8699 0.8716
0.1175 27.07 1110 0.7923 0.8820 0.8691 0.8699 0.8716
0.1319 27.32 1120 0.7938 0.8820 0.8685 0.8701 0.8716
0.1181 27.56 1130 0.7967 0.8820 0.8685 0.8701 0.8716
0.0858 27.8 1140 0.8003 0.8820 0.8685 0.8701 0.8716
0.0697 28.05 1150 0.8025 0.8820 0.8685 0.8701 0.8716
0.0644 28.29 1160 0.8050 0.8820 0.8685 0.8701 0.8716
0.1123 28.54 1170 0.8063 0.8820 0.8685 0.8701 0.8716
0.0998 28.78 1180 0.8078 0.8820 0.8685 0.8701 0.8716
0.1297 29.02 1190 0.8095 0.8820 0.8685 0.8701 0.8716
0.1133 29.27 1200 0.8094 0.8820 0.8685 0.8701 0.8716
0.1122 29.51 1210 0.8095 0.8820 0.8685 0.8701 0.8716
0.1115 29.76 1220 0.8096 0.8820 0.8685 0.8701 0.8716
0.0692 30.0 1230 0.8095 0.8820 0.8685 0.8701 0.8716

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2
Downloads last month
4
Safetensors
Model size
335M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Narkantak/Intent-classification-BERT-Large-Ashuv3

Finetuned
(106)
this model