GPT-2 Medium

Model Details

Model Description: GPT-2 Medium is the 355M parameter version of GPT-2, a transformer-based language model created and released by OpenAI. The model is a pretrained model on English language using a causal language modeling (CLM) objective.

Parameter-Efficient Fine-tuning (PEFT)

Parameter-Efficient Fine-tuning (PEFT) is a technique used to improve the performance of pre-trained language models (LLMs) on specific downstream tasks without fine-tuning all the model's parameters. This is done by freezing most of the model's parameters and only fine-tuning a small number of parameters that are specific to the downstream task.

Training Data

the model is trained on 'b-mc2/sql-create-context' dataset upto 5000rows

Usage:

please install transformers, and peft:

!pip install transformers peft

To use the model, you can run the following:

import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM,  AutoTokenizer

config = PeftConfig.from_pretrained("Naveengo/gpt2-medium-on-sql-create-context")
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=False)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)


# Load the Lora model
model = PeftModel.from_pretrained(model,"Naveengo/gpt2-medium-on-sql-create-context")

from IPython.display import display, Markdown

def make_inference(question, context):
  batch = tokenizer(f"Below is an SQL instruction that describes a task, paired with an input that provides further context. Write an SQL query that appropriately completes the request using your expertise in SQL.  ### Instruction: {question}### Input: {context}### Response:", return_tensors='pt')
  
  with torch.cuda.amp.autocast():
    output_tokens = model.generate(**batch, max_new_tokens=100)

  display(Markdown((tokenizer.decode(output_tokens[0], skip_special_tokens=True))))  
#give question and context to function
make_inference(your_question_here, your_context_here)

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: float16

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: float16

Framework versions

  • PEFT 0.5.0

  • PEFT 0.5.0

Downloads last month
18
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support question-answering models for peft library.

Dataset used to train Naveengo/gpt2-medium-on-sql-create-context