Edit model card

Release 1.0 (March 11, 2021)

NB-Bert base model finetuned on Norwegian machine translated MNLI

Description

The most effective way of creating a good classifier is to finetune a pre-trained model for the specific task at hand. However, in many cases this is simply impossible. Yin et al. proposed a very clever way of using pre-trained MNLI models as zero-shot sequence classifiers. The methods works by reformulating the question to an MNLI hypothesis. If we want to figure out if a text is about "sport", we simply state that "This text is about sport" ("Denne teksten handler om sport").

When the model is finetuned on the 400k large MNLI task, it is in many cases able to solve this classification tasks. There are no MNLI-set of this size in Norwegian but we have trained it on a machine translated version of the original MNLI-set.

Testing the model

For testing the model, we recommend the NbAiLab Colab Notebook

Hugging Face zero-shot-classification pipeline

The easiest way to try this out is by using the Hugging Face pipeline. Please, note that you will get better results when using Norwegian hypothesis template instead of the default English one.

from transformers import pipeline
classifier = pipeline("zero-shot-classification", model="NbAiLab/nb-bert-base-mnli")

You can then use this pipeline to classify sequences into any of the class names you specify.

sequence_to_classify = 'Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september.'
candidate_labels = ['politikk', 'helse', 'sport', 'religion']
hypothesis_template = 'Dette eksempelet er {}.'
classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template, multi_class=True)

# {'labels': ['helse', 'politikk', 'sport', 'religion'], 
# 'scores': [0.4210019111633301, 0.0674605593085289, 0.000840459018945694, 0.0007541406666859984],
# 'sequence': 'Folkehelseinstituttets mest optimistiske anslag er at alle over 18 år er ferdigvaksinert innen midten av september.'}

More information

For more information on the model, see

https://github.com/NBAiLab/notram

Here you will also find a Colab explaining more in details how to use the zero-shot-classification pipeline.

Downloads last month
244
Safetensors
Model size
178M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train NbAiLab/nb-bert-base-mnli

Spaces using NbAiLab/nb-bert-base-mnli 2