Update README.md
Browse files
README.md
CHANGED
@@ -15,8 +15,9 @@ datasets:
|
|
15 |
- xnli
|
16 |
pipeline_tag: zero-shot-classification
|
17 |
widget:
|
18 |
-
- text: "
|
19 |
-
candidate_labels: "politikk, helse, sport, religion
|
|
|
20 |
multi_class: true
|
21 |
---
|
22 |
|
@@ -25,15 +26,34 @@ widget:
|
|
25 |
# NB-Bert base model finetuned on Norwegian machine translated MNLI
|
26 |
|
27 |
## Description
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
## More information
|
36 |
|
37 |
For more information on the model, see
|
38 |
|
39 |
https://github.com/NBAiLab/notram
|
|
|
|
|
|
15 |
- xnli
|
16 |
pipeline_tag: zero-shot-classification
|
17 |
widget:
|
18 |
+
- text: "Folkehelseinstituttets mest optimistiske anslag er at alle over 18 år er ferdigvaksinert innen midten av september."
|
19 |
+
candidate_labels: "politikk, helse, sport, religion"
|
20 |
+
hypothesis_template = "Denne teksten handler om {}."
|
21 |
multi_class: true
|
22 |
---
|
23 |
|
|
|
26 |
# NB-Bert base model finetuned on Norwegian machine translated MNLI
|
27 |
|
28 |
## Description
|
29 |
+
The most effective way of creating a good classifier is to finetune it for this specific task. However, in many cases this is simply impossible.
|
30 |
+
[Yin et al.](https://arxiv.org/abs/1909.00161) has proposed a very clever way of using pre-trained MNLI model as a zero-shot sequence classifiers. The methods works by reformulating the question to an MNLI hypothesis. If we want to figure out if a text is about "sport", we simply state that "This text is about sport" ("Denne teksten handler om sport").
|
31 |
+
|
32 |
+
When the model is finetuned on the 400k large MNLI task, it is in many cases able to solve this classification tasks. There are no MNLI-set of this size in Norwegian but we have trained it on a machine translated version of the original MNLI-set.
|
33 |
+
|
34 |
+
## Hugging Face zero-shot-classification pipeline
|
35 |
+
The easiest way to try this out is using the Hugging Face pipeline. Please note that you will improve the results by overriding the English hypothesis template.
|
36 |
+
```python
|
37 |
+
from transformers import pipeline
|
38 |
+
classifier = pipeline("zero-shot-classification", model="NBAiLab/nb-bert-base-mnli")
|
39 |
+
```
|
40 |
+
You can then use this pipeline to classify sequences into any of the class names you specify.
|
41 |
+
```python
|
42 |
+
sequence_to_classify = "Folkehelseinstituttets mest optimistiske anslag er at alle over 18 år er ferdigvaksinert innen midten av september."
|
43 |
+
candidate_labels = ["politikk, helse, sport, religion"]
|
44 |
+
hypothesis_template = "Denne teksten handler om {}."
|
45 |
+
classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template, multi_class=True)
|
46 |
+
|
47 |
+
|
48 |
+
#{'labels': ['travel', 'dancing', 'cooking'],
|
49 |
+
# 'scores': [0.9938651323318481, 0.0032737774308770895, 0.002861034357920289],
|
50 |
+
# 'sequence': 'one day I will see the world'}
|
51 |
+
```
|
52 |
|
53 |
## More information
|
54 |
|
55 |
For more information on the model, see
|
56 |
|
57 |
https://github.com/NBAiLab/notram
|
58 |
+
|
59 |
+
Here you will also find a Colab explaining more in details how to use the zero-shot-classification pipeline.
|