pere's picture
Bulk update
bf00e22
metadata
language:
  - 'no'
license: apache-2.0
base_model: NbAiLab/nb-whisper-small-v0.8-vad3
tags:
  - audio
  - asr
  - automatic-speech-recognition
  - hf-asr-leaderboard
model-index:
  - name: nb-whisper-small-v0.8-vad3-verbatim
    results: []

nb-whisper-small-v0.8-vad3-verbatim

This model is a fine-tuned version of NbAiLab/nb-whisper-small-v0.8-vad3 on the NbAiLab/NPSC dataset. It achieves the following results on the evaluation set:

  • step: 249
  • validation_loss: 0.5783
  • train_loss: 0.4395
  • validation_wer: 9.3843
  • validation_cer: 3.1287
  • validation_exact_wer: 9.5329
  • validation_exact_cer: 3.1513

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • lr_scheduler_type: linear
  • per_device_train_batch_size: 32
  • total_train_batch_size_per_node: 128
  • total_train_batch_size: 1024
  • total_optimization_steps: 250
  • starting_optimization_step: None
  • finishing_optimization_step: 250
  • num_train_dataset_workers: 32
  • num_hosts: 8
  • total_num_training_examples: 256,000
  • steps_per_epoch: 45
  • num_beams: None
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.98
  • adam_epsilon: 1e-06
  • dropout: True
  • bpe_dropout_probability: 0.2
  • activation_dropout_probability: 0.1

Training results

step validation_loss train_loss validation_wer validation_cer validation_exact_wer validation_exact_cer
0 1.4467 1.3978 19.2607 12.0780 34.1889 15.2244
40 0.5979 0.5311 10.8048 3.6534 10.9488 3.6881
80 0.5743 0.4963 9.9323 3.3896 10.0745 3.4130
120 0.5719 0.4591 9.8317 3.3754 9.9447 3.3959
160 0.5738 0.4571 9.5129 3.2325 9.6852 3.2569
200 0.5772 0.4494 9.4178 3.1392 9.5668 3.1618
240 0.5788 0.4449 9.3954 3.1192 9.5386 3.1418
249 0.5783 0.4395 9.3843 3.1287 9.5329 3.1513

Framework versions

  • Transformers 4.34.1
  • Datasets 2.16.1
  • Tokenizers 0.14.1