Edit model card

scream_duo_dropout_bpe_dropout

This model is a fine-tuned version of openai/whisper-small on the NbAiLab/NCC_speech_all_v5 dataset. It achieves the following results on the evaluation set:

  • step: 19999
  • eval_loss: 5.2383
  • train_loss: 0.4761
  • eval_wer: 10.1096
  • eval_cer: 4.9735

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • lr_scheduler_type: linear
  • per_device_train_batch_size: 32
  • total_train_batch_size_per_node: 128
  • total_train_batch_size: 1024
  • total_optimization_steps: 20,000
  • starting_optimization_step: None
  • finishing_optimization_step: 20,000
  • num_train_dataset_workers: 32
  • num_hosts: 8
  • total_num_training_examples: 20,480,000
  • steps_per_epoch: 1314
  • num_beams: 5

Training results

step eval_loss train_loss eval_wer eval_cer
0 4.2078 2.2707 169.1230 127.5435
1000 3.2725 0.8044 18.8490 7.9113
2000 2.8829 0.7114 12.7893 5.2205
3000 2.5190 0.6461 11.6931 5.1247
4000 2.5935 0.5883 10.8100 4.8325
5000 2.3213 0.5753 10.7186 4.8677
6000 3.2012 0.5495 10.6273 5.0491
7000 2.9775 0.5279 10.8100 5.0441
8000 3.1645 0.5412 9.9574 4.8929
9000 2.9499 0.5191 11.0840 7.1504
10000 3.7657 0.5215 10.5968 5.0189
11000 3.7694 0.5086 9.9574 4.8375
12000 3.9640 0.5121 10.3228 4.9685
13000 4.2364 0.4982 10.3532 5.0088
14000 4.5940 0.4908 9.9574 4.8627
15000 4.7101 0.4696 10.1401 5.0239
16000 4.7501 0.4680 9.8965 4.7317
17000 4.9145 0.4751 10.0792 5.0239
18000 5.1751 0.4783 10.0183 4.9332
19000 5.2207 0.4566 10.0183 4.9131
19999 5.2383 0.4761 10.1096 4.9735

Framework versions

  • Transformers 4.29.0.dev0
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
27
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.