pere's picture
Update stats.md
4d222a4
|
raw
history blame
2.98 kB
metadata
language:
  - 'no'
license: apache-2.0
base_model: NbAiLab/nb-whisper-base-v0.8-vad3
tags:
  - audio
  - asr
  - automatic-speech-recognition
  - hf-asr-leaderboard
model-index:
  - name: nb-whisper-base-v0.8-vad3-verbatim
    results: []

nb-whisper-base-v0.8-vad3-verbatim

This model is a fine-tuned version of NbAiLab/nb-whisper-base-v0.8-vad3 on the NbAiLab/NPSC dataset. It achieves the following results on the evaluation set:

  • step: 249
  • validation_loss: 0.5419
  • train_loss: 0.4718
  • validation_wer: 11.3249
  • validation_cer: 3.9000
  • validation_exact_wer: 11.5693
  • validation_exact_cer: 3.9375

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • lr_scheduler_type: linear
  • per_device_train_batch_size: 32
  • total_train_batch_size_per_node: 128
  • total_train_batch_size: 1024
  • total_optimization_steps: 250
  • starting_optimization_step: None
  • finishing_optimization_step: 250
  • num_train_dataset_workers: 32
  • num_hosts: 8
  • total_num_training_examples: 256,000
  • steps_per_epoch: 45
  • num_beams: None
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.98
  • adam_epsilon: 1e-06
  • dropout: True
  • bpe_dropout_probability: 0.2
  • activation_dropout_probability: 0.1

Training results

step validation_loss train_loss validation_wer validation_cer validation_exact_wer validation_exact_cer
0 1.2371 1.2082 21.0503 11.5619 35.6160 14.7314
40 0.5799 0.5877 13.1592 4.4751 13.4138 4.5352
80 0.5521 0.5398 11.8506 4.0542 12.0939 4.0935
120 0.5469 0.4995 11.6884 3.9923 11.9641 4.0345
160 0.5441 0.4875 11.3864 3.9305 11.6257 3.9651
200 0.5422 0.4770 11.3808 3.9209 11.6370 3.9631
240 0.5417 0.4789 11.2913 3.8886 11.5241 3.9251
249 0.5419 0.4718 11.3249 3.9000 11.5693 3.9375

Framework versions

  • Transformers 4.34.1
  • Datasets 2.16.1
  • Tokenizers 0.14.1