nb-whisper-small / README.md
pere's picture
Saving weights and logs of step 25000 - epoch 3
b0e104d
|
raw
history blame
4.26 kB
metadata
language:
  - 'no'
license: apache-2.0
base_model: NbAiLab/nb-whisper-small-RC1
tags:
  - audio
  - asr
  - automatic-speech-recognition
  - hf-asr-leaderboard
model-index:
  - name: nb-whisper-small-v0.8-vad3
    results: []

nb-whisper-small-v0.8-vad3

This model is a fine-tuned version of NbAiLab/nb-whisper-small-RC1 on the NbAiLab/ncc_speech_styling_v2_vad3 dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • lr_scheduler_type: linear
  • per_device_train_batch_size: 32
  • total_train_batch_size_per_node: 128
  • total_train_batch_size: 1024
  • total_optimization_steps: 50,000
  • starting_optimization_step: None
  • finishing_optimization_step: 50,000
  • num_train_dataset_workers: 32
  • num_hosts: 8
  • total_num_training_examples: 51,200,000
  • steps_per_epoch: 7455
  • num_beams: None
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.98
  • adam_epsilon: 1e-06
  • dropout: True
  • bpe_dropout_probability: 0.2
  • activation_dropout_probability: 0.1

Training results

step validation_nst_loss train_loss validation_nst_wer validation_nst_cer validation_nst_exact_wer validation_nst_exact_cer validation_clean_stortinget_no_loss validation_clean_stortinget_no_wer validation_clean_stortinget_no_cer validation_clean_stortinget_no_exact_wer validation_clean_stortinget_no_exact_cer
0 0.4313 1.0396 2.8254 0.8865 3.5168 0.9900 0.5547 9.6092 5.9949 12.6794 6.4755
5000 0.4484 0.5692 3.2010 1.0142 3.8870 1.1172 0.6138 10.1824 6.1896 13.4124 6.6954
10000 0.4477 0.5317 3.3589 1.0347 4.0176 1.1337 0.6275 10.3316 6.4310 13.6022 6.9442
15000 0.4493 0.5132 3.3099 1.0086 3.9904 1.1145 0.6599 10.2203 6.3042 13.4100 6.8175
20000 0.4491 0.4911 3.2283 1.0226 3.8924 1.1227 0.6755 10.1421 6.3188 13.4409 6.8428
25000 0.4441 0.4766 3.1575 0.9816 3.8924 1.0898 0.6763 10.2700 6.3383 13.5951 6.8658

Framework versions

  • Transformers 4.34.1
  • Datasets 2.16.1
  • Tokenizers 0.14.1