layoutlm-funsd / README.md
Neha-CanWill's picture
End of training
35eb996 verified
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1246
  • Answer: {'precision': 0.3804878048780488, 'recall': 0.4820766378244747, 'f1': 0.425299890948746, 'number': 809}
  • Header: {'precision': 0.34408602150537637, 'recall': 0.2689075630252101, 'f1': 0.3018867924528302, 'number': 119}
  • Question: {'precision': 0.4845360824742268, 'recall': 0.6178403755868545, 'f1': 0.5431283532810565, 'number': 1065}
  • Overall Precision: 0.4362
  • Overall Recall: 0.5419
  • Overall F1: 0.4833
  • Overall Accuracy: 0.6171

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7202 1.0 10 1.4980 {'precision': 0.05310734463276836, 'recall': 0.0580964153275649, 'f1': 0.05548996458087367, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.26246719160104987, 'recall': 0.28169014084507044, 'f1': 0.27173913043478265, 'number': 1065} 0.1711 0.1741 0.1726 0.3625
1.4151 2.0 20 1.3029 {'precision': 0.19834183673469388, 'recall': 0.38442521631644005, 'f1': 0.26167437946992006, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.266388557806913, 'recall': 0.4197183098591549, 'f1': 0.32592052497265767, 'number': 1065} 0.2325 0.3803 0.2886 0.4280
1.259 3.0 30 1.1884 {'precision': 0.2627235213204952, 'recall': 0.4721878862793572, 'f1': 0.3376049491825011, 'number': 809} {'precision': 0.06349206349206349, 'recall': 0.03361344537815126, 'f1': 0.04395604395604396, 'number': 119} {'precision': 0.3270588235294118, 'recall': 0.5220657276995305, 'f1': 0.4021699819168174, 'number': 1065} 0.2928 0.4727 0.3616 0.4939
1.1328 4.0 40 1.0951 {'precision': 0.30996309963099633, 'recall': 0.519159456118665, 'f1': 0.3881700554528651, 'number': 809} {'precision': 0.2857142857142857, 'recall': 0.18487394957983194, 'f1': 0.22448979591836735, 'number': 119} {'precision': 0.4103139013452915, 'recall': 0.5154929577464789, 'f1': 0.4569288389513109, 'number': 1065} 0.3578 0.4972 0.4161 0.5748
1.0223 5.0 50 1.0810 {'precision': 0.28736581337737405, 'recall': 0.43016069221260816, 'f1': 0.3445544554455445, 'number': 809} {'precision': 0.37142857142857144, 'recall': 0.2184873949579832, 'f1': 0.2751322751322751, 'number': 119} {'precision': 0.38396624472573837, 'recall': 0.5981220657276995, 'f1': 0.4676945668135095, 'number': 1065} 0.3439 0.5073 0.4099 0.5856
0.9408 6.0 60 1.0602 {'precision': 0.3160667251975417, 'recall': 0.44499381953028433, 'f1': 0.3696098562628337, 'number': 809} {'precision': 0.345679012345679, 'recall': 0.23529411764705882, 'f1': 0.27999999999999997, 'number': 119} {'precision': 0.4154838709677419, 'recall': 0.6046948356807512, 'f1': 0.49254302103250486, 'number': 1065} 0.3726 0.5178 0.4333 0.5983
0.8629 7.0 70 1.0853 {'precision': 0.3160220994475138, 'recall': 0.3535228677379481, 'f1': 0.33372228704784135, 'number': 809} {'precision': 0.375, 'recall': 0.2773109243697479, 'f1': 0.31884057971014496, 'number': 119} {'precision': 0.42748091603053434, 'recall': 0.6309859154929578, 'f1': 0.50967007963595, 'number': 1065} 0.3864 0.4972 0.4348 0.5961
0.8089 8.0 80 1.0864 {'precision': 0.35083114610673666, 'recall': 0.4956736711990111, 'f1': 0.4108606557377049, 'number': 809} {'precision': 0.36904761904761907, 'recall': 0.2605042016806723, 'f1': 0.30541871921182273, 'number': 119} {'precision': 0.4398051496172582, 'recall': 0.5934272300469483, 'f1': 0.5051958433253397, 'number': 1065} 0.3994 0.5339 0.4569 0.6110
0.7662 9.0 90 1.0967 {'precision': 0.36006974716652135, 'recall': 0.5105067985166872, 'f1': 0.42229038854805717, 'number': 809} {'precision': 0.4266666666666667, 'recall': 0.2689075630252101, 'f1': 0.32989690721649484, 'number': 119} {'precision': 0.4724770642201835, 'recall': 0.5802816901408451, 'f1': 0.5208596713021492, 'number': 1065} 0.4202 0.5334 0.4700 0.6115
0.7718 10.0 100 1.1450 {'precision': 0.375, 'recall': 0.5414091470951793, 'f1': 0.44309559939301973, 'number': 809} {'precision': 0.4050632911392405, 'recall': 0.2689075630252101, 'f1': 0.3232323232323232, 'number': 119} {'precision': 0.5078125, 'recall': 0.5492957746478874, 'f1': 0.5277401894451962, 'number': 1065} 0.4398 0.5294 0.4804 0.6057
0.6988 11.0 110 1.1180 {'precision': 0.36609829488465395, 'recall': 0.4511742892459827, 'f1': 0.4042081949058693, 'number': 809} {'precision': 0.3333333333333333, 'recall': 0.2689075630252101, 'f1': 0.29767441860465116, 'number': 119} {'precision': 0.4661602209944751, 'recall': 0.6338028169014085, 'f1': 0.5372065260644648, 'number': 1065} 0.4219 0.5379 0.4729 0.6089
0.6905 12.0 120 1.1064 {'precision': 0.36837029893924783, 'recall': 0.4721878862793572, 'f1': 0.41386782231852653, 'number': 809} {'precision': 0.3793103448275862, 'recall': 0.2773109243697479, 'f1': 0.32038834951456313, 'number': 119} {'precision': 0.47112676056338026, 'recall': 0.6281690140845071, 'f1': 0.5384305835010061, 'number': 1065} 0.4261 0.5439 0.4778 0.6149
0.666 13.0 130 1.1045 {'precision': 0.36981132075471695, 'recall': 0.484548825710754, 'f1': 0.4194756554307116, 'number': 809} {'precision': 0.3516483516483517, 'recall': 0.2689075630252101, 'f1': 0.3047619047619048, 'number': 119} {'precision': 0.48205128205128206, 'recall': 0.6178403755868545, 'f1': 0.5415637860082304, 'number': 1065} 0.4300 0.5429 0.4799 0.6174
0.6335 14.0 140 1.1195 {'precision': 0.3810463968410661, 'recall': 0.47713226205191595, 'f1': 0.42371020856201974, 'number': 809} {'precision': 0.34831460674157305, 'recall': 0.2605042016806723, 'f1': 0.2980769230769231, 'number': 119} {'precision': 0.4817204301075269, 'recall': 0.6309859154929578, 'f1': 0.5463414634146342, 'number': 1065} 0.4361 0.5464 0.4851 0.6187
0.6277 15.0 150 1.1246 {'precision': 0.3804878048780488, 'recall': 0.4820766378244747, 'f1': 0.425299890948746, 'number': 809} {'precision': 0.34408602150537637, 'recall': 0.2689075630252101, 'f1': 0.3018867924528302, 'number': 119} {'precision': 0.4845360824742268, 'recall': 0.6178403755868545, 'f1': 0.5431283532810565, 'number': 1065} 0.4362 0.5419 0.4833 0.6171

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2