SetFit with BAAI/bge-base-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-base-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-base-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1 |
|
0 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 1.0 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Netta1994/setfit_baai_newrelic_gpt-4o_cot-instructions_remove_final_evaluation_e1_one_out_17270")
# Run inference
preds = model("Reasoning:
1. Context Grounding: The response draws from the documents providing relevant sources such as the organization's website, job ads, and newsletter link.
2. Relevance: The answer is directly related to the question about understanding the organization's products, challenges, and future.
3. Conciseness: The answer is clear and to the point.
4. Does not attempt to respond when the document lacks information: It addresses the question appropriately with the available information.
5. Specificity: The answer is specific and provides concrete steps to follow.
6. Relevant tips: The answer includes actionable steps like visiting the website, viewing job ads, and signing up for a newsletter, which are relevant.
The answer precisely matches all the criteria set for evaluation.
Final Result:")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 32 | 104.4858 | 245 |
Label | Training Sample Count |
---|---|
0 | 381 |
1 | 393 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0005 | 1 | 0.2622 | - |
0.0258 | 50 | 0.2676 | - |
0.0517 | 100 | 0.2524 | - |
0.0775 | 150 | 0.2505 | - |
0.1034 | 200 | 0.253 | - |
0.1292 | 250 | 0.2458 | - |
0.1550 | 300 | 0.2191 | - |
0.1809 | 350 | 0.1842 | - |
0.2067 | 400 | 0.1665 | - |
0.2326 | 450 | 0.1262 | - |
0.2584 | 500 | 0.093 | - |
0.2842 | 550 | 0.0614 | - |
0.3101 | 600 | 0.0524 | - |
0.3359 | 650 | 0.0346 | - |
0.3618 | 700 | 0.0412 | - |
0.3876 | 750 | 0.0246 | - |
0.4134 | 800 | 0.0183 | - |
0.4393 | 850 | 0.0165 | - |
0.4651 | 900 | 0.0193 | - |
0.4910 | 950 | 0.0134 | - |
0.5168 | 1000 | 0.0044 | - |
0.5426 | 1050 | 0.0097 | - |
0.5685 | 1100 | 0.0085 | - |
0.5943 | 1150 | 0.0088 | - |
0.6202 | 1200 | 0.0079 | - |
0.6460 | 1250 | 0.0042 | - |
0.6718 | 1300 | 0.003 | - |
0.6977 | 1350 | 0.0038 | - |
0.7235 | 1400 | 0.0072 | - |
0.7494 | 1450 | 0.0017 | - |
0.7752 | 1500 | 0.0024 | - |
0.8010 | 1550 | 0.0019 | - |
0.8269 | 1600 | 0.0015 | - |
0.8527 | 1650 | 0.0015 | - |
0.8786 | 1700 | 0.0014 | - |
0.9044 | 1750 | 0.0014 | - |
0.9302 | 1800 | 0.0014 | - |
0.9561 | 1850 | 0.0014 | - |
0.9819 | 1900 | 0.0013 | - |
Framework Versions
- Python: 3.10.14
- SetFit: 1.1.0
- Sentence Transformers: 3.1.1
- Transformers: 4.44.0
- PyTorch: 2.4.0+cu121
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 52
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Netta1994/setfit_baai_newrelic_gpt-4o_cot-instructions_remove_final_evaluation_e1_one_out_17270
Base model
BAAI/bge-base-en-v1.5