Covid_Vaccine_Sentiment_Analysis_Bert_based_Model

This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1070

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
0.7469 0.5 500 0.7283
0.691 1.0 1000 0.6457
0.5828 1.5 1500 0.6741
0.5723 2.0 2000 0.6179
0.4145 2.5 2500 0.8410
0.4044 3.0 3000 0.7809
0.2592 3.5 3500 1.1192
0.2932 4.0 4000 1.2706
0.162 4.5 4500 1.3559
0.1846 5.0 5000 1.2930
0.0975 5.5 5500 1.4937
0.1228 6.0 6000 1.5674
0.0718 6.5 6500 1.6709
0.068 7.0 7000 1.8645
0.0478 7.5 7500 2.0231
0.0504 8.0 8000 1.8383
0.0245 8.5 8500 2.0527
0.0366 9.0 9000 2.0015
0.0197 9.5 9500 2.1190
0.0147 10.0 10000 2.1070

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
37
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for NewtonKimathi/Covid_Vaccine_Sentiment_Analysis_Bert_based_Model

Finetuned
(2006)
this model