File size: 2,334 Bytes
6b090d3 089bc72 6b090d3 089bc72 6b090d3 089bc72 6b090d3 089bc72 6b090d3 089bc72 6b090d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
model-index:
- name: Covid_Vaccine_Sentiment_Analysis_Bert_based_Model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Covid_Vaccine_Sentiment_Analysis_Bert_based_Model
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0254
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.7571 | 0.5 | 500 | 0.7201 |
| 0.7109 | 1.0 | 1000 | 0.7818 |
| 0.6315 | 1.5 | 1500 | 0.6852 |
| 0.6027 | 2.0 | 2000 | 0.6426 |
| 0.4843 | 2.5 | 2500 | 0.7306 |
| 0.4498 | 3.0 | 3000 | 0.6962 |
| 0.3384 | 3.5 | 3500 | 1.0376 |
| 0.3462 | 4.0 | 4000 | 1.1839 |
| 0.2456 | 4.5 | 4500 | 1.2843 |
| 0.2445 | 5.0 | 5000 | 1.3436 |
| 0.1542 | 5.5 | 5500 | 1.5233 |
| 0.1698 | 6.0 | 6000 | 1.5252 |
| 0.1042 | 6.5 | 6500 | 1.4930 |
| 0.11 | 7.0 | 7000 | 1.5485 |
| 0.0646 | 7.5 | 7500 | 1.7473 |
| 0.0711 | 8.0 | 8000 | 1.7637 |
| 0.0456 | 8.5 | 8500 | 1.8249 |
| 0.0379 | 9.0 | 9000 | 1.9362 |
| 0.0305 | 9.5 | 9500 | 2.0290 |
| 0.025 | 10.0 | 10000 | 2.0254 |
### Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|