Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: tlphams/gollm-12.8b-instruct-v2.3
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 3fcf3479a2a769ba_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/3fcf3479a2a769ba_train_data.json
  type:
    field_instruction: text
    field_output: title
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: Nexspear/081b573c-0c9f-474d-9c0c-fff7b725c72c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/3fcf3479a2a769ba_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: e685be46-fea1-4be9-bbf5-860051127cd2
wandb_project: Gradients-On-Four
wandb_run: your_name
wandb_runid: e685be46-fea1-4be9-bbf5-860051127cd2
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

081b573c-0c9f-474d-9c0c-fff7b725c72c

This model is a fine-tuned version of tlphams/gollm-12.8b-instruct-v2.3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0001 1 nan
11.779 0.0008 9 nan
9.3957 0.0017 18 nan
6.3071 0.0025 27 nan
4.6804 0.0034 36 nan
3.9238 0.0042 45 nan
4.2902 0.0050 54 nan
4.5272 0.0059 63 nan
3.9847 0.0067 72 nan
3.9379 0.0075 81 nan
3.8218 0.0084 90 nan
4.3009 0.0092 99 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for Nexspear/081b573c-0c9f-474d-9c0c-fff7b725c72c

Adapter
(179)
this model