metadata
library_name: transformers
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: zephyr-7b-uf-dpo-2e
results: []
zephyr-7b-uf-dpo-2e
This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:
- Loss: 0.5016
- Rewards/chosen: -1.5911
- Rewards/rejected: -2.8172
- Rewards/accuracies: 0.7695
- Rewards/margins: 1.2260
- Logps/rejected: -544.3789
- Logps/chosen: -421.7447
- Logits/rejected: 2.2404
- Logits/chosen: 1.4759
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.5692 | 0.4184 | 100 | 0.5671 | -0.3691 | -0.9295 | 0.7344 | 0.5604 | -355.6129 | -299.5389 | -1.1363 | -1.3128 |
0.5056 | 0.8368 | 200 | 0.5104 | -0.9550 | -1.8507 | 0.7852 | 0.8957 | -447.7286 | -358.1263 | 1.4954 | 0.9604 |
0.3744 | 1.2552 | 300 | 0.5120 | -1.3455 | -2.5618 | 0.7617 | 1.2163 | -518.8406 | -397.1791 | 1.8527 | 0.9871 |
0.351 | 1.6736 | 400 | 0.5019 | -1.5195 | -2.7388 | 0.7695 | 1.2193 | -536.5389 | -414.5813 | 2.1782 | 1.4005 |
Framework versions
- Transformers 4.44.1
- Pytorch 2.1.2+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1