|
--- |
|
base_model: BAAI/bge-base-en-v1.5 |
|
datasets: [] |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:6300 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: Teams across Delta have worked together to make an impact through |
|
enhanced landing procedures, optimizations to flight routing and speed, and weight |
|
reduction initiatives, saving over 20 million gallons of jet fuel in 2022 and |
|
2023. |
|
sentences: |
|
- What was the percentage increase in Services net sales from 2022 to 2023? |
|
- How much jet fuel did Delta Air Lines save between 2022 and 2023 through optimizations |
|
in aircraft operations? |
|
- How did Ford Pro's EBIT in 2023 compare to the previous year, and what contributed |
|
to this change? |
|
- source_sentence: On February 14, 2022, the State of Texas filed a lawsuit against |
|
us in Texas state court (Texas v. Meta Platforms, Inc.) alleging that "tag suggestions" |
|
and other uses of facial recognition technology violated the Texas Capture or |
|
Use of Biometric Identifiers Act and the Texas Deceptive Trade Practices-Consumer |
|
Protection Act, and seeking statutory damages and injunctive relief. |
|
sentences: |
|
- What did the auditor’s report dated February 9, 2024, state about the effectiveness |
|
of Enphase Energy’s internal control over financial reporting as of December 31, |
|
2023? |
|
- What legal action did the State of Texas initiate against Meta Platforms, Inc. |
|
on February 14, 2022? |
|
- What caused the pretax loss in the Corporate & Other segment to increase in 2023 |
|
compared to 2022? |
|
- source_sentence: Our two operating segments are "Compute & Networking" and "Graphics." |
|
Refer to Note 17 of the Notes to the Consolidated Financial Statements in Part |
|
IV, Item 15 of this Annual Report on Form 10-K for additional information. |
|
sentences: |
|
- What are the two operating segments of NVIDIA as mentioned in the text? |
|
- How much did the gross margin increase in 2023 compared to 2022? |
|
- What is the total assets and shareholders' equity of Chubb Limited as of December |
|
31, 2023? |
|
- source_sentence: The increase in marketing and sales expenses in fiscal year 2023 |
|
was mainly due to higher advertising and promotional spending related to Apex |
|
Legends Mobile and the FIFA franchise. |
|
sentences: |
|
- What are included in Part IV, Item 15(a)(1) of the Annual Report on Form 10-K? |
|
- What was the net income reported for the fiscal year ending in August 2023? |
|
- What was the primary cause of the increase in marketing and sales expenses in |
|
fiscal year 2023? |
|
- source_sentence: 'Information on legal proceedings is included in Contact Email PRIOR |
|
HISTORY: None PLACEHOLDER FOR ARBITRATION.' |
|
sentences: |
|
- Where can information about legal proceedings be found in the financial statements? |
|
- What remaining authorization amount was available for share repurchases as of |
|
January 28, 2023? |
|
- What is the total amount authorized for the repurchase of common stock up to December |
|
2023? |
|
model-index: |
|
- name: BGE base Financial Matryoshka |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.71 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8428571428571429 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8771428571428571 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9142857142857143 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.71 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.28095238095238095 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.1754285714285714 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09142857142857141 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.71 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8428571428571429 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8771428571428571 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9142857142857143 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.8151955748060781 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.783174603174603 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7866554834362436 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.7028571428571428 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8457142857142858 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.88 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9157142857142857 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.7028571428571428 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2819047619047619 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.176 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09157142857142857 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.7028571428571428 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8457142857142858 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.88 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9157142857142857 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.8131832672898918 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7799625850340134 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7833067978748278 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6985714285714286 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8457142857142858 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8785714285714286 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9071428571428571 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6985714285714286 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2819047619047619 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17571428571428568 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.0907142857142857 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6985714285714286 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8457142857142858 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8785714285714286 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9071428571428571 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.8072080679843728 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7746224489795912 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7782328948106179 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6914285714285714 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8428571428571429 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8714285714285714 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9057142857142857 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6914285714285714 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.28095238095238095 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17428571428571427 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09057142857142855 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6914285714285714 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8428571428571429 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8714285714285714 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9057142857142857 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.80532196181792 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7725623582766435 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7764353709024747 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6757142857142857 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8114285714285714 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.85 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.8842857142857142 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6757142857142857 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2704761904761904 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.16999999999999998 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08842857142857141 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6757142857142857 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8114285714285714 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.85 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8842857142857142 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7835900962247281 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7508775510204081 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7557906355020412 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# BGE base Financial Matryoshka |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("NickyNicky/bge-base-financial-matryoshka") |
|
# Run inference |
|
sentences = [ |
|
'Information on legal proceedings is included in Contact Email PRIOR HISTORY: None PLACEHOLDER FOR ARBITRATION.', |
|
'Where can information about legal proceedings be found in the financial statements?', |
|
'What remaining authorization amount was available for share repurchases as of January 28, 2023?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.71 | |
|
| cosine_accuracy@3 | 0.8429 | |
|
| cosine_accuracy@5 | 0.8771 | |
|
| cosine_accuracy@10 | 0.9143 | |
|
| cosine_precision@1 | 0.71 | |
|
| cosine_precision@3 | 0.281 | |
|
| cosine_precision@5 | 0.1754 | |
|
| cosine_precision@10 | 0.0914 | |
|
| cosine_recall@1 | 0.71 | |
|
| cosine_recall@3 | 0.8429 | |
|
| cosine_recall@5 | 0.8771 | |
|
| cosine_recall@10 | 0.9143 | |
|
| cosine_ndcg@10 | 0.8152 | |
|
| cosine_mrr@10 | 0.7832 | |
|
| **cosine_map@100** | **0.7867** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.7029 | |
|
| cosine_accuracy@3 | 0.8457 | |
|
| cosine_accuracy@5 | 0.88 | |
|
| cosine_accuracy@10 | 0.9157 | |
|
| cosine_precision@1 | 0.7029 | |
|
| cosine_precision@3 | 0.2819 | |
|
| cosine_precision@5 | 0.176 | |
|
| cosine_precision@10 | 0.0916 | |
|
| cosine_recall@1 | 0.7029 | |
|
| cosine_recall@3 | 0.8457 | |
|
| cosine_recall@5 | 0.88 | |
|
| cosine_recall@10 | 0.9157 | |
|
| cosine_ndcg@10 | 0.8132 | |
|
| cosine_mrr@10 | 0.78 | |
|
| **cosine_map@100** | **0.7833** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6986 | |
|
| cosine_accuracy@3 | 0.8457 | |
|
| cosine_accuracy@5 | 0.8786 | |
|
| cosine_accuracy@10 | 0.9071 | |
|
| cosine_precision@1 | 0.6986 | |
|
| cosine_precision@3 | 0.2819 | |
|
| cosine_precision@5 | 0.1757 | |
|
| cosine_precision@10 | 0.0907 | |
|
| cosine_recall@1 | 0.6986 | |
|
| cosine_recall@3 | 0.8457 | |
|
| cosine_recall@5 | 0.8786 | |
|
| cosine_recall@10 | 0.9071 | |
|
| cosine_ndcg@10 | 0.8072 | |
|
| cosine_mrr@10 | 0.7746 | |
|
| **cosine_map@100** | **0.7782** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6914 | |
|
| cosine_accuracy@3 | 0.8429 | |
|
| cosine_accuracy@5 | 0.8714 | |
|
| cosine_accuracy@10 | 0.9057 | |
|
| cosine_precision@1 | 0.6914 | |
|
| cosine_precision@3 | 0.281 | |
|
| cosine_precision@5 | 0.1743 | |
|
| cosine_precision@10 | 0.0906 | |
|
| cosine_recall@1 | 0.6914 | |
|
| cosine_recall@3 | 0.8429 | |
|
| cosine_recall@5 | 0.8714 | |
|
| cosine_recall@10 | 0.9057 | |
|
| cosine_ndcg@10 | 0.8053 | |
|
| cosine_mrr@10 | 0.7726 | |
|
| **cosine_map@100** | **0.7764** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6757 | |
|
| cosine_accuracy@3 | 0.8114 | |
|
| cosine_accuracy@5 | 0.85 | |
|
| cosine_accuracy@10 | 0.8843 | |
|
| cosine_precision@1 | 0.6757 | |
|
| cosine_precision@3 | 0.2705 | |
|
| cosine_precision@5 | 0.17 | |
|
| cosine_precision@10 | 0.0884 | |
|
| cosine_recall@1 | 0.6757 | |
|
| cosine_recall@3 | 0.8114 | |
|
| cosine_recall@5 | 0.85 | |
|
| cosine_recall@10 | 0.8843 | |
|
| cosine_ndcg@10 | 0.7836 | |
|
| cosine_mrr@10 | 0.7509 | |
|
| **cosine_map@100** | **0.7558** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 6,300 training samples |
|
* Columns: <code>positive</code> and <code>anchor</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | positive | anchor | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 47.19 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.59 tokens</li><li>max: 41 tokens</li></ul> | |
|
* Samples: |
|
| positive | anchor | |
|
|:----------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------| |
|
| <code>For the year ended December 31, 2023, $305 million was recorded as a distribution against retained earnings for dividends.</code> | <code>How much in dividends was recorded against retained earnings in 2023?</code> | |
|
| <code>In February 2023, we announced a 10% increase in our quarterly cash dividend to $2.09 per share.</code> | <code>By how much did the company increase its quarterly cash dividend in February 2023?</code> | |
|
| <code>Depreciation and amortization totaled $4,856 as recorded in the financial statements.</code> | <code>How much did depreciation and amortization total to in the financial statements?</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 40 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 20 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `tf32`: True |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 40 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 20 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: True |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |
|
|:-------:|:----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| |
|
| 0.9114 | 9 | - | 0.7124 | 0.7361 | 0.7366 | 0.6672 | 0.7443 | |
|
| 1.0127 | 10 | 2.0952 | - | - | - | - | - | |
|
| 1.9241 | 19 | - | 0.7437 | 0.7561 | 0.7628 | 0.7172 | 0.7653 | |
|
| 2.0253 | 20 | 1.1175 | - | - | - | - | - | |
|
| 2.9367 | 29 | - | 0.7623 | 0.7733 | 0.7694 | 0.7288 | 0.7723 | |
|
| 3.0380 | 30 | 0.6104 | - | - | - | - | - | |
|
| 3.9494 | 39 | - | 0.7723 | 0.7746 | 0.7804 | 0.7405 | 0.7789 | |
|
| 4.0506 | 40 | 0.4106 | - | - | - | - | - | |
|
| 4.9620 | 49 | - | 0.7777 | 0.7759 | 0.7820 | 0.7475 | 0.7842 | |
|
| 5.0633 | 50 | 0.314 | - | - | - | - | - | |
|
| 5.9747 | 59 | - | 0.7802 | 0.7796 | 0.7856 | 0.7548 | 0.7839 | |
|
| 6.0759 | 60 | 0.2423 | - | - | - | - | - | |
|
| 6.9873 | 69 | - | 0.7756 | 0.7772 | 0.7834 | 0.7535 | 0.7818 | |
|
| 7.0886 | 70 | 0.1962 | - | - | - | - | - | |
|
| 8.0 | 79 | - | 0.7741 | 0.7774 | 0.7841 | 0.7551 | 0.7822 | |
|
| 8.1013 | 80 | 0.1627 | - | - | - | - | - | |
|
| 8.9114 | 88 | - | 0.7724 | 0.7752 | 0.7796 | 0.7528 | 0.7816 | |
|
| 9.1139 | 90 | 0.1379 | - | - | - | - | - | |
|
| 9.9241 | 98 | - | 0.7691 | 0.7782 | 0.7834 | 0.7559 | 0.7836 | |
|
| 10.1266 | 100 | 0.1249 | - | - | - | - | - | |
|
| 10.9367 | 108 | - | 0.7728 | 0.7802 | 0.7831 | 0.7536 | 0.7848 | |
|
| 11.1392 | 110 | 0.1105 | - | - | - | - | - | |
|
| 11.9494 | 118 | - | 0.7748 | 0.7785 | 0.7814 | 0.7558 | 0.7851 | |
|
| 12.1519 | 120 | 0.1147 | - | - | - | - | - | |
|
| 12.9620 | 128 | - | 0.7756 | 0.7788 | 0.7839 | 0.7550 | 0.7864 | |
|
| 13.1646 | 130 | 0.098 | - | - | - | - | - | |
|
| 13.9747 | 138 | - | 0.7767 | 0.7792 | 0.7828 | 0.7557 | 0.7873 | |
|
| 14.1772 | 140 | 0.0927 | - | - | - | - | - | |
|
| 14.9873 | 148 | - | 0.7758 | 0.7804 | 0.7847 | 0.7569 | 0.7892 | |
|
| 15.1899 | 150 | 0.0921 | - | - | - | - | - | |
|
| 16.0 | 158 | - | 0.7760 | 0.7794 | 0.7831 | 0.7551 | 0.7873 | |
|
| 16.2025 | 160 | 0.0896 | - | - | - | - | - | |
|
| 16.9114 | 167 | - | 0.7753 | 0.7799 | 0.7841 | 0.7570 | 0.7888 | |
|
| 17.2152 | 170 | 0.0881 | - | - | - | - | - | |
|
| 17.9241 | 177 | - | 0.7763 | 0.7787 | 0.7842 | 0.7561 | 0.7867 | |
|
| 18.2278 | 180 | 0.0884 | 0.7764 | 0.7782 | 0.7833 | 0.7558 | 0.7867 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.2.0+cu121 |
|
- Accelerate: 0.31.0 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |