|
--- |
|
datasets: |
|
- reddit |
|
metrics: |
|
- rouge |
|
--- |
|
|
|
[Distilbart-cnn-6-6](https://huggingface.co/sshleifer/distilbart-cnn-6-6) finetuned on the [reddit dataset](https://huggingface.co/datasets/reddit) |
|
|
|
Example usage: |
|
|
|
```python |
|
# Load finetuned model |
|
tokenizer = BartTokenizer.from_pretrained("NielsV/distilbart-cnn-6-6-reddit") |
|
model = BartForConditionalGeneration.from_pretrained("NielsV/distilbart-cnn-6-6-reddit") |
|
|
|
input_text = "..." # The text you want summarized |
|
|
|
# Tokenize the text, summarize and decode the result |
|
inputs = tokenizer(input_txt, max_length=1024, return_tensors="pt") |
|
summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=0, max_length=60) |
|
summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
|
|
# The string summary contains the tldr |
|
``` |
|
|
|
For more information, check out [this repository](https://github.com/VerleysenNiels/arxiv-summarizer) |