NikolayKozloff's picture
Upload README.md with huggingface_hub
6d0ab85 verified
---
base_model: OuteAI/Lite-Mistral-150M-v2-Instruct
license: apache-2.0
tags:
- llama-cpp
- gguf-my-repo
---
# NikolayKozloff/Lite-Mistral-150M-v2-Instruct-Q8_0-GGUF
This model was converted to GGUF format from [`OuteAI/Lite-Mistral-150M-v2-Instruct`](https://huggingface.co/OuteAI/Lite-Mistral-150M-v2-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/OuteAI/Lite-Mistral-150M-v2-Instruct) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo NikolayKozloff/Lite-Mistral-150M-v2-Instruct-Q8_0-GGUF --hf-file lite-mistral-150m-v2-instruct-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo NikolayKozloff/Lite-Mistral-150M-v2-Instruct-Q8_0-GGUF --hf-file lite-mistral-150m-v2-instruct-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo NikolayKozloff/Lite-Mistral-150M-v2-Instruct-Q8_0-GGUF --hf-file lite-mistral-150m-v2-instruct-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo NikolayKozloff/Lite-Mistral-150M-v2-Instruct-Q8_0-GGUF --hf-file lite-mistral-150m-v2-instruct-q8_0.gguf -c 2048
```