Text Generation
Transformers
GGUF
PyTorch
English
python
java
cpp
sql
function calling
unit tests
causalLM
codeLLAMA modified archi
document
code
code2doc
instruction_tuned
basemodel
docstring
documentation
text-generation-inference
plan
planner
llama-cpp
gguf-my-repo
Inference Endpoints
conversational
language: | |
- en | |
license: apache-2.0 | |
library_name: transformers | |
tags: | |
- python | |
- java | |
- cpp | |
- sql | |
- function calling | |
- unit tests | |
- causalLM | |
- codeLLAMA modified archi | |
- document | |
- code | |
- code2doc | |
- instruction_tuned | |
- basemodel | |
- pytorch | |
- docstring | |
- documentation | |
- text-generation-inference | |
- plan | |
- planner | |
- llama-cpp | |
- gguf-my-repo | |
metrics: | |
- accuracy | |
pipeline_tag: text-generation | |
widget: | |
- text: '<example_response>--code:def function_divide2(x): return x / 2--question:Document | |
the code--doc:Description:This function takes a number and divides it by 2.Parameters:- | |
x (numeric): The input value to be divided by 2.Returns:- float: The result of | |
x divided by 2.Example:To call the function, use the following code:function_divide2(1.0)</example_response><function_code>def | |
_plot_bounding_polygon(polygons_coordinates, output_html_path=bounding_polygon_map.html):map_center | |
= [sum([coord[0]for polygon_coords in polygons_coordinatesfor coord in polygon_coords])/ | |
sum([len(polygon_coords) for polygon_coords in polygons_coordinates]),sum([coord[1]for | |
polygon_coords in polygons_coordinatesfor coord in polygon_coords])/ sum([len(polygon_coords) | |
for polygon_coords in polygons_coordinates]),]my_map = folium.Map(location=map_center, | |
zoom_start=12)for polygon_coords in polygons_coordinates:folium.Polygon(locations=polygon_coords,color=blue,fill=True,fill_color=blue,fill_opacity=0.2,).add_to(my_map)marker_cluster | |
= MarkerCluster().add_to(my_map)for polygon_coords in polygons_coordinates:for | |
coord in polygon_coords:folium.Marker(location=[coord[0], coord[1]], popup=fCoordinates: | |
{coord}).add_to(marker_cluster)draw = Draw(export=True)draw.add_to(my_map)my_map.save(output_html_path)return | |
output_html_path</function_code><question>Document the python code above giving | |
function description ,parameters and return type and example how to call the function</question><doc>' | |
example_title: example | |
# NikolayKozloff/pip-code-bandit-Q8_0-GGUF | |
This model was converted to GGUF format from [`PipableAI/pip-code-bandit`](https://huggingface.co/PipableAI/pip-code-bandit) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. | |
Refer to the [original model card](https://huggingface.co/PipableAI/pip-code-bandit) for more details on the model. | |
## Use with llama.cpp | |
Install llama.cpp through brew. | |
```bash | |
brew install ggerganov/ggerganov/llama.cpp | |
``` | |
Invoke the llama.cpp server or the CLI. | |
CLI: | |
```bash | |
llama-cli --hf-repo NikolayKozloff/pip-code-bandit-Q8_0-GGUF --model pip-code-bandit.Q8_0.gguf -p "The meaning to life and the universe is" | |
``` | |
Server: | |
```bash | |
llama-server --hf-repo NikolayKozloff/pip-code-bandit-Q8_0-GGUF --model pip-code-bandit.Q8_0.gguf -c 2048 | |
``` | |
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. | |
``` | |
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m pip-code-bandit.Q8_0.gguf -n 128 | |
``` | |